C4graphGraph forms for C4 [ 245, 3 ] = {4,4}_<21,14>

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 245, 3 ] = {4,4}_<21,14>.

(I) Following is a form readable by MAGMA:

g:=Graph<245|{ {2, 3}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {1, 2}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {93, 94}, {97, 98}, {101, 102}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {3, 4}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28}, {43, 44}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {7, 8}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {1, 35}, {141, 175}, {4, 39}, {208, 243}, {204, 239}, {200, 235}, {196, 231}, {192, 227}, {88, 123}, {84, 119}, {80, 115}, {76, 111}, {72, 107}, {68, 103}, {64, 99}, {8, 43}, {12, 47}, {16, 51}, {20, 55}, {24, 59}, {28, 63}, {92, 127}, {128, 163}, {132, 167}, {136, 171}, {140, 175}, {144, 179}, {148, 183}, {152, 187}, {156, 191}, {1, 36}, {209, 244}, {203, 238}, {201, 236}, {195, 230}, {193, 228}, {83, 118}, {81, 116}, {75, 110}, {73, 108}, {67, 102}, {65, 100}, {3, 38}, {9, 44}, {11, 46}, {17, 52}, {19, 54}, {25, 60}, {27, 62}, {89, 124}, {91, 126}, {129, 164}, {131, 166}, {137, 172}, {139, 174}, {145, 180}, {147, 182}, {153, 188}, {155, 190}, {211, 245}, {2, 37}, {210, 245}, {202, 237}, {194, 229}, {82, 117}, {74, 109}, {66, 101}, {10, 45}, {18, 53}, {26, 61}, {90, 125}, {130, 165}, {138, 173}, {146, 181}, {154, 189}, {5, 40}, {199, 234}, {197, 232}, {87, 122}, {85, 120}, {71, 106}, {69, 104}, {7, 42}, {21, 56}, {23, 58}, {133, 168}, {135, 170}, {149, 184}, {151, 186}, {71, 105}, {6, 41}, {198, 233}, {86, 121}, {70, 105}, {22, 57}, {134, 169}, {150, 185}, {13, 48}, {207, 242}, {205, 240}, {79, 114}, {77, 112}, {15, 50}, {141, 176}, {143, 178}, {14, 49}, {223, 224}, {206, 241}, {159, 160}, {78, 113}, {31, 32}, {95, 96}, {142, 177}, {29, 64}, {191, 226}, {189, 224}, {159, 194}, {63, 98}, {61, 96}, {31, 66}, {157, 192}, {30, 65}, {190, 225}, {62, 97}, {158, 193}, {36, 70}, {176, 210}, {32, 67}, {188, 223}, {184, 219}, {180, 215}, {176, 211}, {172, 207}, {168, 203}, {164, 199}, {160, 195}, {60, 95}, {56, 91}, {52, 87}, {36, 71}, {40, 75}, {44, 79}, {48, 83}, {33, 68}, {187, 222}, {185, 220}, {179, 214}, {177, 212}, {171, 206}, {169, 204}, {163, 198}, {161, 196}, {59, 94}, {57, 92}, {51, 86}, {35, 70}, {41, 76}, {43, 78}, {49, 84}, {34, 69}, {186, 221}, {178, 213}, {170, 205}, {162, 197}, {58, 93}, {50, 85}, {42, 77}, {37, 72}, {183, 218}, {181, 216}, {167, 202}, {165, 200}, {55, 90}, {53, 88}, {39, 74}, {38, 73}, {182, 217}, {166, 201}, {54, 89}, {45, 80}, {175, 210}, {173, 208}, {47, 82}, {46, 81}, {191, 192}, {174, 209}, {63, 64}, {30, 212}, {31, 213}, {29, 211}, {2, 219}, {4, 221}, {6, 223}, {1, 218}, {5, 222}, {93, 128}, {95, 130}, {125, 160}, {127, 162}, {3, 220}, {94, 129}, {126, 161}, {96, 131}, {100, 135}, {104, 139}, {108, 143}, {112, 147}, {116, 151}, {120, 155}, {124, 159}, {97, 132}, {99, 134}, {105, 140}, {107, 142}, {113, 148}, {115, 150}, {121, 156}, {123, 158}, {106, 140}, {7, 224}, {15, 232}, {23, 240}, {98, 133}, {106, 141}, {114, 149}, {122, 157}, {8, 225}, {10, 227}, {12, 229}, {14, 231}, {24, 241}, {26, 243}, {28, 245}, {9, 226}, {13, 230}, {25, 242}, {101, 136}, {103, 138}, {117, 152}, {119, 154}, {11, 228}, {27, 244}, {102, 137}, {118, 153}, {32, 214}, {33, 215}, {16, 233}, {18, 235}, {20, 237}, {22, 239}, {34, 216}, {35, 217}, {17, 234}, {21, 238}, {109, 144}, {111, 146}, {19, 236}, {110, 145}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 218)(3, 183)(4, 148)(5, 113)(6, 78)(7, 43)(9, 225)(10, 190)(11, 155)(12, 120)(13, 85)(14, 50)(16, 232)(17, 197)(18, 162)(19, 127)(20, 92)(21, 57)(23, 239)(24, 204)(25, 169)(26, 134)(27, 99)(28, 64)(30, 211)(31, 176)(32, 141)(33, 106)(34, 71)(35, 36)(37, 217)(38, 182)(39, 147)(40, 112)(41, 77)(44, 224)(45, 189)(46, 154)(47, 119)(48, 84)(51, 231)(52, 196)(53, 161)(54, 126)(55, 91)(58, 238)(59, 203)(60, 168)(61, 133)(62, 98)(65, 245)(66, 210)(67, 175)(68, 140)(69, 105)(72, 216)(73, 181)(74, 146)(75, 111)(79, 223)(80, 188)(81, 153)(82, 118)(86, 230)(87, 195)(88, 160)(89, 125)(93, 237)(94, 202)(95, 167)(96, 132)(100, 244)(101, 209)(102, 174)(103, 139)(107, 215)(108, 180)(109, 145)(114, 222)(115, 187)(116, 152)(121, 229)(122, 194)(123, 159)(128, 236)(129, 201)(130, 166)(135, 243)(136, 208)(137, 173)(142, 214)(143, 179)(149, 221)(150, 186)(156, 228)(157, 193)(163, 235)(164, 200)(170, 242)(171, 207)(177, 213)(184, 220)(191, 227)(198, 234)(205, 241)
b: (2, 36)(3, 71)(4, 106)(5, 141)(6, 176)(7, 211)(8, 29)(9, 64)(10, 99)(11, 134)(12, 169)(13, 204)(14, 239)(15, 22)(16, 57)(17, 92)(18, 127)(19, 162)(20, 197)(21, 232)(23, 50)(24, 85)(25, 120)(26, 155)(27, 190)(28, 225)(30, 43)(31, 78)(32, 113)(33, 148)(34, 183)(35, 218)(38, 72)(39, 107)(40, 142)(41, 177)(42, 212)(44, 65)(45, 100)(46, 135)(47, 170)(48, 205)(49, 240)(51, 58)(52, 93)(53, 128)(54, 163)(55, 198)(56, 233)(59, 86)(60, 121)(61, 156)(62, 191)(63, 226)(66, 79)(67, 114)(68, 149)(69, 184)(70, 219)(74, 108)(75, 143)(76, 178)(77, 213)(80, 101)(81, 136)(82, 171)(83, 206)(84, 241)(87, 94)(88, 129)(89, 164)(90, 199)(91, 234)(95, 122)(96, 157)(97, 192)(98, 227)(102, 115)(103, 150)(104, 185)(105, 220)(110, 144)(111, 179)(112, 214)(116, 137)(117, 172)(118, 207)(119, 242)(123, 130)(124, 165)(125, 200)(126, 235)(131, 158)(132, 193)(133, 228)(138, 151)(139, 186)(140, 221)(146, 180)(147, 215)(152, 173)(153, 208)(154, 243)(159, 166)(160, 201)(161, 236)(167, 194)(168, 229)(174, 187)(175, 222)(182, 216)(188, 209)(189, 244)(195, 202)(196, 237)(203, 230)(210, 223)(224, 245)(231, 238)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35)(36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70)(71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105)(106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140)(141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175)(176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210)(211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 245, 3 ]
245
-1 2 35 36 218
-2 1 3 37 219
-3 220 2 4 38
-4 221 3 5 39
-5 222 4 6 40
-6 223 5 7 41
-7 224 6 8 42
-8 225 7 9 43
-9 44 226 8 10
-10 11 45 227 9
-11 12 46 228 10
-12 11 13 47 229
-13 12 14 48 230
-14 231 13 15 49
-15 232 14 16 50
-16 233 15 17 51
-17 234 16 18 52
-18 235 17 19 53
-19 236 18 20 54
-20 55 237 19 21
-21 22 56 238 20
-22 23 57 239 21
-23 22 24 58 240
-24 23 25 59 241
-25 242 24 26 60
-26 243 25 27 61
-27 244 26 28 62
-28 245 27 29 63
-29 211 28 30 64
-30 212 29 31 65
-31 66 213 30 32
-32 33 67 214 31
-33 34 68 215 32
-34 33 35 69 216
-35 1 34 70 217
-36 1 37 70 71
-37 2 36 38 72
-38 3 37 39 73
-39 4 38 40 74
-40 5 39 41 75
-41 6 40 42 76
-42 77 7 41 43
-43 44 78 8 42
-44 45 79 9 43
-45 44 46 80 10
-46 11 45 47 81
-47 12 46 48 82
-48 13 47 49 83
-49 14 48 50 84
-50 15 49 51 85
-51 16 50 52 86
-52 17 51 53 87
-53 88 18 52 54
-54 55 89 19 53
-55 56 90 20 54
-56 55 57 91 21
-57 22 56 58 92
-58 23 57 59 93
-59 24 58 60 94
-60 25 59 61 95
-61 26 60 62 96
-62 27 61 63 97
-63 28 62 64 98
-64 99 29 63 65
-65 66 100 30 64
-66 67 101 31 65
-67 66 68 102 32
-68 33 67 69 103
-69 34 68 70 104
-70 35 36 69 105
-71 36 72 105 106
-72 37 71 73 107
-73 38 72 74 108
-74 39 73 75 109
-75 110 40 74 76
-76 77 111 41 75
-77 78 112 42 76
-78 77 79 113 43
-79 44 78 80 114
-80 45 79 81 115
-81 46 80 82 116
-82 47 81 83 117
-83 48 82 84 118
-84 49 83 85 119
-85 50 84 86 120
-86 121 51 85 87
-87 88 122 52 86
-88 89 123 53 87
-89 88 90 124 54
-90 55 89 91 125
-91 56 90 92 126
-92 57 91 93 127
-93 58 92 94 128
-94 59 93 95 129
-95 60 94 96 130
-96 61 95 97 131
-97 132 62 96 98
-98 99 133 63 97
-99 100 134 64 98
-100 99 101 135 65
-101 66 100 102 136
-102 67 101 103 137
-103 68 102 104 138
-104 69 103 105 139
-105 70 71 104 140
-106 71 107 140 141
-107 72 106 108 142
-108 143 73 107 109
-109 110 144 74 108
-110 111 145 75 109
-111 110 112 146 76
-112 77 111 113 147
-113 78 112 114 148
-114 79 113 115 149
-115 80 114 116 150
-116 81 115 117 151
-117 82 116 118 152
-118 83 117 119 153
-119 154 84 118 120
-120 121 155 85 119
-121 122 156 86 120
-122 121 123 157 87
-123 88 122 124 158
-124 89 123 125 159
-125 90 124 126 160
-126 91 125 127 161
-127 92 126 128 162
-128 93 127 129 163
-129 94 128 130 164
-130 165 95 129 131
-131 132 166 96 130
-132 133 167 97 131
-133 132 134 168 98
-134 99 133 135 169
-135 100 134 136 170
-136 101 135 137 171
-137 102 136 138 172
-138 103 137 139 173
-139 104 138 140 174
-140 105 106 139 175
-141 176 106 142 175
-142 143 177 107 141
-143 144 178 108 142
-144 143 145 179 109
-145 110 144 146 180
-146 111 145 147 181
-147 112 146 148 182
-148 113 147 149 183
-149 114 148 150 184
-150 115 149 151 185
-151 116 150 152 186
-152 187 117 151 153
-153 154 188 118 152
-154 155 189 119 153
-155 154 156 190 120
-156 121 155 157 191
-157 122 156 158 192
-158 123 157 159 193
-159 124 158 160 194
-160 125 159 161 195
-161 126 160 162 196
-162 127 161 163 197
-163 198 128 162 164
-164 165 199 129 163
-165 166 200 130 164
-166 165 167 201 131
-167 132 166 168 202
-168 133 167 169 203
-169 134 168 170 204
-170 135 169 171 205
-171 136 170 172 206
-172 137 171 173 207
-173 138 172 174 208
-174 209 139 173 175
-175 210 140 141 174
-176 177 210 211 141
-177 176 178 212 142
-178 143 177 179 213
-179 144 178 180 214
-180 145 179 181 215
-181 146 180 182 216
-182 147 181 183 217
-183 148 182 184 218
-184 149 183 185 219
-185 220 150 184 186
-186 187 221 151 185
-187 188 222 152 186
-188 187 189 223 153
-189 154 188 190 224
-190 155 189 191 225
-191 156 190 192 226
-192 157 191 193 227
-193 158 192 194 228
-194 159 193 195 229
-195 160 194 196 230
-196 231 161 195 197
-197 198 232 162 196
-198 199 233 163 197
-199 198 200 234 164
-200 165 199 201 235
-201 166 200 202 236
-202 167 201 203 237
-203 168 202 204 238
-204 169 203 205 239
-205 170 204 206 240
-206 171 205 207 241
-207 242 172 206 208
-208 209 243 173 207
-209 210 244 174 208
-210 176 209 245 175
-211 176 212 245 29
-212 177 211 213 30
-213 178 212 214 31
-214 179 213 215 32
-215 33 180 214 216
-216 34 181 215 217
-217 35 182 216 218
-218 1 183 217 219
-219 220 2 184 218
-220 221 3 185 219
-221 220 222 4 186
-222 187 221 223 5
-223 188 222 224 6
-224 189 223 225 7
-225 190 224 226 8
-226 191 225 227 9
-227 192 226 228 10
-228 11 193 227 229
-229 12 194 228 230
-230 231 13 195 229
-231 232 14 196 230
-232 231 233 15 197
-233 198 232 234 16
-234 199 233 235 17
-235 200 234 236 18
-236 201 235 237 19
-237 202 236 238 20
-238 203 237 239 21
-239 22 204 238 240
-240 23 205 239 241
-241 242 24 206 240
-242 243 25 207 241
-243 242 244 26 208
-244 209 243 245 27
-245 210 211 244 28
0

**************