C4graphGraph forms for C4 [ 246, 2 ] = C_246(1,83)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 246, 2 ] = C_246(1,83).

(I) Following is a form readable by MAGMA:

g:=Graph<246|{ {2, 3}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {198, 199}, {200, 201}, {202, 203}, {1, 2}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {201, 202}, {3, 4}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {195, 196}, {203, 204}, {7, 8}, {231, 232}, {215, 216}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {199, 200}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {4, 87}, {8, 91}, {12, 95}, {32, 115}, {36, 119}, {40, 123}, {44, 127}, {128, 211}, {132, 215}, {136, 219}, {140, 223}, {160, 243}, {1, 84}, {3, 86}, {9, 92}, {11, 94}, {33, 116}, {35, 118}, {41, 124}, {43, 126}, {129, 212}, {131, 214}, {137, 220}, {139, 222}, {161, 244}, {163, 246}, {2, 85}, {10, 93}, {34, 117}, {42, 125}, {130, 213}, {138, 221}, {162, 245}, {5, 88}, {7, 90}, {37, 120}, {39, 122}, {133, 216}, {135, 218}, {6, 89}, {38, 121}, {134, 217}, {13, 96}, {15, 98}, {29, 112}, {31, 114}, {141, 224}, {143, 226}, {157, 240}, {159, 242}, {14, 97}, {30, 113}, {142, 225}, {158, 241}, {16, 99}, {20, 103}, {24, 107}, {28, 111}, {144, 227}, {148, 231}, {152, 235}, {156, 239}, {17, 100}, {19, 102}, {25, 108}, {27, 110}, {145, 228}, {147, 230}, {153, 236}, {155, 238}, {18, 101}, {26, 109}, {146, 229}, {154, 237}, {21, 104}, {23, 106}, {149, 232}, {151, 234}, {22, 105}, {63, 64}, {150, 233}, {191, 192}, {4, 167}, {80, 243}, {76, 239}, {72, 235}, {68, 231}, {64, 227}, {8, 171}, {12, 175}, {16, 179}, {20, 183}, {24, 187}, {28, 191}, {1, 164}, {83, 246}, {81, 244}, {75, 238}, {73, 236}, {67, 230}, {65, 228}, {3, 166}, {9, 172}, {11, 174}, {17, 180}, {19, 182}, {25, 188}, {27, 190}, {2, 165}, {82, 245}, {74, 237}, {66, 229}, {10, 173}, {18, 181}, {26, 189}, {5, 168}, {71, 234}, {69, 232}, {63, 146}, {61, 144}, {7, 170}, {21, 184}, {23, 186}, {45, 128}, {47, 130}, {109, 192}, {111, 194}, {125, 208}, {127, 210}, {6, 169}, {70, 233}, {62, 145}, {22, 185}, {46, 129}, {110, 193}, {126, 209}, {48, 131}, {60, 143}, {52, 135}, {56, 139}, {112, 195}, {116, 199}, {120, 203}, {124, 207}, {49, 132}, {59, 142}, {57, 140}, {51, 134}, {113, 196}, {115, 198}, {121, 204}, {123, 206}, {50, 133}, {58, 141}, {114, 197}, {122, 205}, {13, 176}, {79, 242}, {77, 240}, {15, 178}, {53, 136}, {55, 138}, {117, 200}, {119, 202}, {14, 177}, {78, 241}, {54, 137}, {118, 201}, {64, 147}, {76, 159}, {72, 155}, {68, 151}, {96, 179}, {100, 183}, {104, 187}, {108, 191}, {65, 148}, {75, 158}, {73, 156}, {67, 150}, {97, 180}, {99, 182}, {105, 188}, {107, 190}, {66, 149}, {74, 157}, {98, 181}, {106, 189}, {29, 192}, {71, 154}, {69, 152}, {63, 226}, {61, 224}, {31, 194}, {101, 184}, {103, 186}, {30, 193}, {70, 153}, {62, 225}, {102, 185}, {32, 195}, {60, 223}, {56, 219}, {36, 199}, {40, 203}, {44, 207}, {48, 211}, {52, 215}, {33, 196}, {59, 222}, {57, 220}, {35, 198}, {41, 204}, {43, 206}, {49, 212}, {51, 214}, {34, 197}, {58, 221}, {42, 205}, {50, 213}, {37, 200}, {93, 176}, {79, 162}, {77, 160}, {39, 202}, {53, 216}, {55, 218}, {95, 178}, {38, 201}, {94, 177}, {78, 161}, {54, 217}, {80, 163}, {92, 175}, {88, 171}, {84, 167}, {81, 164}, {91, 174}, {89, 172}, {83, 166}, {1, 246}, {90, 173}, {82, 165}, {45, 208}, {87, 170}, {85, 168}, {47, 210}, {46, 209}, {86, 169}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 84)(3, 167)(5, 87)(6, 170)(8, 90)(9, 173)(11, 93)(12, 176)(14, 96)(15, 179)(17, 99)(18, 182)(20, 102)(21, 185)(23, 105)(24, 188)(26, 108)(27, 191)(29, 111)(30, 194)(32, 114)(33, 197)(35, 117)(36, 200)(38, 120)(39, 203)(41, 123)(42, 206)(44, 126)(45, 209)(47, 129)(48, 212)(50, 132)(51, 215)(53, 135)(54, 218)(56, 138)(57, 221)(59, 141)(60, 224)(62, 144)(63, 227)(65, 147)(66, 230)(68, 150)(69, 233)(71, 153)(72, 236)(74, 156)(75, 239)(77, 159)(78, 242)(80, 162)(81, 245)(83, 165)(86, 168)(89, 171)(92, 174)(95, 177)(98, 180)(101, 183)(104, 186)(107, 189)(110, 192)(113, 195)(116, 198)(119, 201)(122, 204)(125, 207)(128, 210)(131, 213)(134, 216)(137, 219)(140, 222)(143, 225)(146, 228)(149, 231)(152, 234)(155, 237)(158, 240)(161, 243)(164, 246)
b: (2, 164)(3, 81)(4, 244)(5, 161)(6, 78)(7, 241)(8, 158)(9, 75)(10, 238)(11, 155)(12, 72)(13, 235)(14, 152)(15, 69)(16, 232)(17, 149)(18, 66)(19, 229)(20, 146)(21, 63)(22, 226)(23, 143)(24, 60)(25, 223)(26, 140)(27, 57)(28, 220)(29, 137)(30, 54)(31, 217)(32, 134)(33, 51)(34, 214)(35, 131)(36, 48)(37, 211)(38, 128)(39, 45)(40, 208)(41, 125)(43, 205)(44, 122)(46, 202)(47, 119)(49, 199)(50, 116)(52, 196)(53, 113)(55, 193)(56, 110)(58, 190)(59, 107)(61, 187)(62, 104)(64, 184)(65, 101)(67, 181)(68, 98)(70, 178)(71, 95)(73, 175)(74, 92)(76, 172)(77, 89)(79, 169)(80, 86)(82, 166)(84, 246)(85, 163)(87, 243)(88, 160)(90, 240)(91, 157)(93, 237)(94, 154)(96, 234)(97, 151)(99, 231)(100, 148)(102, 228)(103, 145)(105, 225)(106, 142)(108, 222)(109, 139)(111, 219)(112, 136)(114, 216)(115, 133)(117, 213)(118, 130)(120, 210)(121, 127)(123, 207)(126, 204)(129, 201)(132, 198)(135, 195)(138, 192)(141, 189)(144, 186)(147, 183)(150, 180)(153, 177)(156, 174)(159, 171)(162, 168)(167, 245)(170, 242)(173, 239)(176, 236)(179, 233)(182, 230)(185, 227)(188, 224)(191, 221)(194, 218)(197, 215)(200, 212)(203, 209)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 246, 2 ]
246
-1 2 246 84 164
-2 165 1 3 85
-3 166 2 4 86
-4 167 3 5 87
-5 88 168 4 6
-6 89 169 5 7
-7 90 170 6 8
-8 91 171 7 9
-9 92 172 8 10
-10 11 93 173 9
-11 12 94 174 10
-12 11 13 95 175
-13 176 12 14 96
-14 177 13 15 97
-15 178 14 16 98
-16 99 179 15 17
-17 100 180 16 18
-18 101 181 17 19
-19 102 182 18 20
-20 103 183 19 21
-21 22 104 184 20
-22 23 105 185 21
-23 22 24 106 186
-24 187 23 25 107
-25 188 24 26 108
-26 189 25 27 109
-27 110 190 26 28
-28 111 191 27 29
-29 112 192 28 30
-30 113 193 29 31
-31 114 194 30 32
-32 33 115 195 31
-33 34 116 196 32
-34 33 35 117 197
-35 198 34 36 118
-36 199 35 37 119
-37 200 36 38 120
-38 121 201 37 39
-39 122 202 38 40
-40 123 203 39 41
-41 124 204 40 42
-42 125 205 41 43
-43 44 126 206 42
-44 45 127 207 43
-45 44 46 128 208
-46 209 45 47 129
-47 210 46 48 130
-48 211 47 49 131
-49 132 212 48 50
-50 133 213 49 51
-51 134 214 50 52
-52 135 215 51 53
-53 136 216 52 54
-54 55 137 217 53
-55 56 138 218 54
-56 55 57 139 219
-57 220 56 58 140
-58 221 57 59 141
-59 222 58 60 142
-60 143 223 59 61
-61 144 224 60 62
-62 145 225 61 63
-63 146 226 62 64
-64 147 227 63 65
-65 66 148 228 64
-66 67 149 229 65
-67 66 68 150 230
-68 231 67 69 151
-69 232 68 70 152
-70 233 69 71 153
-71 154 234 70 72
-72 155 235 71 73
-73 156 236 72 74
-74 157 237 73 75
-75 158 238 74 76
-76 77 159 239 75
-77 78 160 240 76
-78 77 79 161 241
-79 242 78 80 162
-80 243 79 81 163
-81 244 80 82 164
-82 165 245 81 83
-83 166 246 82 84
-84 1 167 83 85
-85 2 168 84 86
-86 3 169 85 87
-87 88 4 170 86
-88 89 5 171 87
-89 88 90 6 172
-90 89 91 7 173
-91 90 92 8 174
-92 91 93 9 175
-93 176 92 94 10
-94 11 177 93 95
-95 12 178 94 96
-96 13 179 95 97
-97 14 180 96 98
-98 99 15 181 97
-99 100 16 182 98
-100 99 101 17 183
-101 100 102 18 184
-102 101 103 19 185
-103 102 104 20 186
-104 187 103 105 21
-105 22 188 104 106
-106 23 189 105 107
-107 24 190 106 108
-108 25 191 107 109
-109 110 26 192 108
-110 111 27 193 109
-111 110 112 28 194
-112 111 113 29 195
-113 112 114 30 196
-114 113 115 31 197
-115 198 114 116 32
-116 33 199 115 117
-117 34 200 116 118
-118 35 201 117 119
-119 36 202 118 120
-120 121 37 203 119
-121 122 38 204 120
-122 121 123 39 205
-123 122 124 40 206
-124 123 125 41 207
-125 124 126 42 208
-126 209 125 127 43
-127 44 210 126 128
-128 45 211 127 129
-129 46 212 128 130
-130 47 213 129 131
-131 132 48 214 130
-132 133 49 215 131
-133 132 134 50 216
-134 133 135 51 217
-135 134 136 52 218
-136 135 137 53 219
-137 220 136 138 54
-138 55 221 137 139
-139 56 222 138 140
-140 57 223 139 141
-141 58 224 140 142
-142 143 59 225 141
-143 144 60 226 142
-144 143 145 61 227
-145 144 146 62 228
-146 145 147 63 229
-147 146 148 64 230
-148 231 147 149 65
-149 66 232 148 150
-150 67 233 149 151
-151 68 234 150 152
-152 69 235 151 153
-153 154 70 236 152
-154 155 71 237 153
-155 154 156 72 238
-156 155 157 73 239
-157 156 158 74 240
-158 157 159 75 241
-159 242 158 160 76
-160 77 243 159 161
-161 78 244 160 162
-162 79 245 161 163
-163 80 246 162 164
-164 165 1 81 163
-165 166 2 82 164
-166 165 167 3 83
-167 166 168 4 84
-168 167 169 5 85
-169 168 170 6 86
-170 169 171 7 87
-171 88 170 172 8
-172 89 171 173 9
-173 90 172 174 10
-174 11 91 173 175
-175 176 12 92 174
-176 177 13 93 175
-177 176 178 14 94
-178 177 179 15 95
-179 178 180 16 96
-180 179 181 17 97
-181 180 182 18 98
-182 99 181 183 19
-183 100 182 184 20
-184 101 183 185 21
-185 22 102 184 186
-186 187 23 103 185
-187 188 24 104 186
-188 187 189 25 105
-189 188 190 26 106
-190 189 191 27 107
-191 190 192 28 108
-192 191 193 29 109
-193 110 192 194 30
-194 111 193 195 31
-195 112 194 196 32
-196 33 113 195 197
-197 198 34 114 196
-198 199 35 115 197
-199 198 200 36 116
-200 199 201 37 117
-201 200 202 38 118
-202 201 203 39 119
-203 202 204 40 120
-204 121 203 205 41
-205 122 204 206 42
-206 123 205 207 43
-207 44 124 206 208
-208 209 45 125 207
-209 210 46 126 208
-210 209 211 47 127
-211 210 212 48 128
-212 211 213 49 129
-213 212 214 50 130
-214 213 215 51 131
-215 132 214 216 52
-216 133 215 217 53
-217 134 216 218 54
-218 55 135 217 219
-219 220 56 136 218
-220 221 57 137 219
-221 220 222 58 138
-222 221 223 59 139
-223 222 224 60 140
-224 223 225 61 141
-225 224 226 62 142
-226 143 225 227 63
-227 144 226 228 64
-228 145 227 229 65
-229 66 146 228 230
-230 231 67 147 229
-231 232 68 148 230
-232 231 233 69 149
-233 232 234 70 150
-234 233 235 71 151
-235 234 236 72 152
-236 235 237 73 153
-237 154 236 238 74
-238 155 237 239 75
-239 156 238 240 76
-240 77 157 239 241
-241 242 78 158 240
-242 243 79 159 241
-243 242 244 80 160
-244 243 245 81 161
-245 244 246 82 162
-246 1 245 83 163
0

**************