[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 247, 1 ] =
C_247(1,77).
(I) Following is a form readable by MAGMA:
g:=Graph<247|{ {2, 3}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238,
239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227},
{224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212,
213}, {210, 211}, {208, 209}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92,
93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76,
77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60,
61}, {58, 59}, {56, 57}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15},
{16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31},
{32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47},
{48, 49}, {50, 51}, {52, 53}, {54, 55}, {102, 103}, {104, 105}, {106, 107},
{108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120,
121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133},
{134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146,
147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159},
{160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172,
173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185},
{186, 187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {198,
199}, {200, 201}, {202, 203}, {204, 205}, {206, 207}, {1, 2}, {245, 246}, {241,
242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218},
{213, 214}, {209, 210}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77,
78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13,
14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45,
46}, {49, 50}, {53, 54}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117,
118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142},
{145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169,
170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194},
{197, 198}, {201, 202}, {205, 206}, {3, 4}, {243, 244}, {235, 236}, {227, 228},
{219, 220}, {211, 212}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59,
60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {107, 108},
{115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163,
164}, {171, 172}, {179, 180}, {187, 188}, {195, 196}, {203, 204}, {7, 8}, {231,
232}, {215, 216}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {103, 104},
{119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {199, 200}, {15,
16}, {239, 240}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {207,
208}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {2, 79}, {16, 93}, {18, 95},
{32, 109}, {34, 111}, {48, 125}, {50, 127}, {128, 205}, {130, 207}, {144, 221},
{146, 223}, {160, 237}, {162, 239}, {1, 78}, {17, 94}, {33, 110}, {49, 126},
{129, 206}, {145, 222}, {161, 238}, {3, 80}, {7, 84}, {11, 88}, {15, 92}, {35,
112}, {39, 116}, {43, 120}, {47, 124}, {131, 208}, {135, 212}, {139, 216}, {143,
220}, {163, 240}, {167, 244}, {4, 81}, {6, 83}, {12, 89}, {14, 91}, {36, 113},
{38, 115}, {44, 121}, {46, 123}, {132, 209}, {134, 211}, {140, 217}, {142, 219},
{164, 241}, {166, 243}, {5, 82}, {13, 90}, {37, 114}, {45, 122}, {133, 210},
{141, 218}, {165, 242}, {8, 85}, {10, 87}, {40, 117}, {42, 119}, {136, 213},
{138, 215}, {168, 245}, {170, 247}, {9, 86}, {41, 118}, {137, 214}, {169, 246},
{19, 96}, {23, 100}, {27, 104}, {31, 108}, {147, 224}, {151, 228}, {155, 232},
{159, 236}, {20, 97}, {22, 99}, {28, 105}, {30, 107}, {148, 225}, {150, 227},
{156, 233}, {158, 235}, {21, 98}, {29, 106}, {149, 226}, {157, 234}, {24, 101},
{26, 103}, {152, 229}, {154, 231}, {25, 102}, {63, 64}, {153, 230}, {191, 192},
{1, 171}, {69, 239}, {68, 238}, {65, 235}, {64, 234}, {4, 174}, {5, 175}, {16,
186}, {17, 187}, {20, 190}, {21, 191}, {2, 172}, {67, 237}, {66, 236}, {3, 173},
{18, 188}, {19, 189}, {51, 128}, {63, 140}, {59, 136}, {55, 132}, {115, 192},
{119, 196}, {123, 200}, {127, 204}, {52, 129}, {62, 139}, {60, 137}, {54, 131},
{116, 193}, {118, 195}, {124, 201}, {126, 203}, {6, 176}, {71, 241}, {70, 240},
{7, 177}, {14, 184}, {15, 185}, {53, 130}, {61, 138}, {117, 194}, {125, 202},
{8, 178}, {77, 247}, {76, 246}, {73, 243}, {72, 242}, {9, 179}, {12, 182}, {13,
183}, {56, 133}, {58, 135}, {120, 197}, {122, 199}, {10, 180}, {75, 245}, {74,
244}, {11, 181}, {57, 134}, {121, 198}, {64, 141}, {98, 175}, {96, 173}, {82,
159}, {80, 157}, {66, 143}, {112, 189}, {114, 191}, {65, 142}, {97, 174}, {81,
158}, {113, 190}, {67, 144}, {99, 176}, {79, 156}, {75, 152}, {71, 148}, {103,
180}, {107, 184}, {111, 188}, {68, 145}, {100, 177}, {78, 155}, {76, 153}, {70,
147}, {102, 179}, {108, 185}, {110, 187}, {22, 192}, {63, 233}, {62, 232}, {55,
225}, {23, 193}, {30, 200}, {31, 201}, {54, 224}, {69, 146}, {77, 154}, {101,
178}, {109, 186}, {24, 194}, {61, 231}, {60, 230}, {57, 227}, {56, 226}, {25,
195}, {28, 198}, {29, 199}, {72, 149}, {74, 151}, {104, 181}, {106, 183}, {26,
196}, {59, 229}, {58, 228}, {27, 197}, {73, 150}, {105, 182}, {32, 202}, {33,
203}, {36, 206}, {37, 207}, {48, 218}, {49, 219}, {52, 222}, {53, 223}, {34,
204}, {35, 205}, {50, 220}, {51, 221}, {83, 160}, {95, 172}, {91, 168}, {87,
164}, {84, 161}, {94, 171}, {92, 169}, {86, 163}, {1, 247}, {38, 208}, {39,
209}, {46, 216}, {47, 217}, {85, 162}, {93, 170}, {40, 210}, {41, 211}, {44,
214}, {45, 215}, {88, 165}, {90, 167}, {42, 212}, {43, 213}, {89, 166}, {127,
128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 171)(3, 94)(4, 17)(5, 187)(6, 110)(7, 33)(8, 203)(9, 126)(10, 49)(11,
219)(12, 142)(13, 65)(14, 235)(15, 158)(16, 81)(18, 174)(19, 97)(21, 190)(22,
113)(23, 36)(24, 206)(25, 129)(26, 52)(27, 222)(28, 145)(29, 68)(30, 238)(31,
161)(32, 84)(34, 177)(35, 100)(37, 193)(38, 116)(40, 209)(41, 132)(42, 55)(43,
225)(44, 148)(45, 71)(46, 241)(47, 164)(48, 87)(50, 180)(51, 103)(53, 196)(54,
119)(56, 212)(57, 135)(59, 228)(60, 151)(61, 74)(62, 244)(63, 167)(64, 90)(66,
183)(67, 106)(69, 199)(70, 122)(72, 215)(73, 138)(75, 231)(76, 154)(78, 247)(79,
170)(80, 93)(82, 186)(83, 109)(85, 202)(86, 125)(88, 218)(89, 141)(91, 234)(92,
157)(95, 173)(98, 189)(99, 112)(101, 205)(102, 128)(104, 221)(105, 144)(107,
237)(108, 160)(111, 176)(114, 192)(117, 208)(118, 131)(120, 224)(121, 147)(123,
240)(124, 163)(127, 179)(130, 195)(133, 211)(136, 227)(137, 150)(139, 243)(140,
166)(143, 182)(146, 198)(149, 214)(152, 230)(155, 246)(156, 169)(159, 185)(162,
201)(165, 217)(168, 233)(175, 188)(178, 204)(181, 220)(184, 236)(194, 207)(197,
223)(200, 239)(213, 226)(216, 242)(232, 245)
c: (2, 78)(3, 155)(4, 232)(5, 62)(6, 139)(7, 216)(8, 46)(9, 123)(10, 200)(11,
30)(12, 107)(13, 184)(15, 91)(16, 168)(17, 245)(18, 75)(19, 152)(20, 229)(21,
59)(22, 136)(23, 213)(24, 43)(25, 120)(26, 197)(28, 104)(29, 181)(31, 88)(32,
165)(33, 242)(34, 72)(35, 149)(36, 226)(37, 56)(38, 133)(39, 210)(41, 117)(42,
194)(44, 101)(45, 178)(47, 85)(48, 162)(49, 239)(50, 69)(51, 146)(52, 223)(54,
130)(55, 207)(57, 114)(58, 191)(60, 98)(61, 175)(63, 82)(64, 159)(65, 236)(67,
143)(68, 220)(70, 127)(71, 204)(73, 111)(74, 188)(76, 95)(77, 172)(80, 156)(81,
233)(83, 140)(84, 217)(86, 124)(87, 201)(89, 108)(90, 185)(93, 169)(94, 246)(96,
153)(97, 230)(99, 137)(100, 214)(102, 121)(103, 198)(106, 182)(109, 166)(110,
243)(112, 150)(113, 227)(115, 134)(116, 211)(119, 195)(122, 179)(125, 163)(126,
240)(128, 147)(129, 224)(132, 208)(135, 192)(138, 176)(141, 160)(142, 237)(145,
221)(148, 205)(151, 189)(154, 173)(158, 234)(161, 218)(164, 202)(167, 186)(171,
247)(174, 231)(177, 215)(180, 199)(187, 244)(190, 228)(193, 212)(203, 241)(206,
225)(219, 238)
C4[ 247, 1 ]
247
-1 78 2 247 171
-2 1 79 3 172
-3 2 80 4 173
-4 3 81 5 174
-5 4 82 6 175
-6 176 5 83 7
-7 177 6 84 8
-8 178 7 85 9
-9 179 8 86 10
-10 11 180 9 87
-11 88 12 181 10
-12 11 89 13 182
-13 12 90 14 183
-14 13 91 15 184
-15 14 92 16 185
-16 15 93 17 186
-17 187 16 94 18
-18 188 17 95 19
-19 189 18 96 20
-20 190 19 97 21
-21 22 191 20 98
-22 99 23 192 21
-23 22 100 24 193
-24 23 101 25 194
-25 24 102 26 195
-26 25 103 27 196
-27 26 104 28 197
-28 198 27 105 29
-29 199 28 106 30
-30 200 29 107 31
-31 201 30 108 32
-32 33 202 31 109
-33 110 34 203 32
-34 33 111 35 204
-35 34 112 36 205
-36 35 113 37 206
-37 36 114 38 207
-38 37 115 39 208
-39 209 38 116 40
-40 210 39 117 41
-41 211 40 118 42
-42 212 41 119 43
-43 44 213 42 120
-44 121 45 214 43
-45 44 122 46 215
-46 45 123 47 216
-47 46 124 48 217
-48 47 125 49 218
-49 48 126 50 219
-50 220 49 127 51
-51 221 50 128 52
-52 222 51 129 53
-53 223 52 130 54
-54 55 224 53 131
-55 132 56 225 54
-56 55 133 57 226
-57 56 134 58 227
-58 57 135 59 228
-59 58 136 60 229
-60 59 137 61 230
-61 231 60 138 62
-62 232 61 139 63
-63 233 62 140 64
-64 234 63 141 65
-65 66 235 64 142
-66 143 67 236 65
-67 66 144 68 237
-68 67 145 69 238
-69 68 146 70 239
-70 69 147 71 240
-71 70 148 72 241
-72 242 71 149 73
-73 243 72 150 74
-74 244 73 151 75
-75 245 74 152 76
-76 77 246 75 153
-77 154 78 247 76
-78 77 1 155 79
-79 78 2 156 80
-80 79 3 157 81
-81 80 4 158 82
-82 81 5 159 83
-83 82 6 160 84
-84 83 7 161 85
-85 84 8 162 86
-86 85 9 163 87
-87 88 86 10 164
-88 11 165 89 87
-89 88 12 166 90
-90 89 13 167 91
-91 90 14 168 92
-92 91 15 169 93
-93 92 16 170 94
-94 93 17 171 95
-95 94 18 172 96
-96 95 19 173 97
-97 96 20 174 98
-98 99 97 21 175
-99 22 176 100 98
-100 99 23 177 101
-101 100 24 178 102
-102 101 25 179 103
-103 102 26 180 104
-104 103 27 181 105
-105 104 28 182 106
-106 105 29 183 107
-107 106 30 184 108
-108 107 31 185 109
-109 110 108 32 186
-110 33 187 111 109
-111 110 34 188 112
-112 111 35 189 113
-113 112 36 190 114
-114 113 37 191 115
-115 114 38 192 116
-116 115 39 193 117
-117 116 40 194 118
-118 117 41 195 119
-119 118 42 196 120
-120 121 119 43 197
-121 44 198 122 120
-122 121 45 199 123
-123 122 46 200 124
-124 123 47 201 125
-125 124 48 202 126
-126 125 49 203 127
-127 126 50 204 128
-128 127 51 205 129
-129 128 52 206 130
-130 129 53 207 131
-131 132 130 54 208
-132 55 209 133 131
-133 132 56 210 134
-134 133 57 211 135
-135 134 58 212 136
-136 135 59 213 137
-137 136 60 214 138
-138 137 61 215 139
-139 138 62 216 140
-140 139 63 217 141
-141 140 64 218 142
-142 143 141 65 219
-143 66 220 144 142
-144 143 67 221 145
-145 144 68 222 146
-146 145 69 223 147
-147 146 70 224 148
-148 147 71 225 149
-149 148 72 226 150
-150 149 73 227 151
-151 150 74 228 152
-152 151 75 229 153
-153 154 152 76 230
-154 77 231 155 153
-155 154 78 232 156
-156 155 79 233 157
-157 156 80 234 158
-158 157 81 235 159
-159 158 82 236 160
-160 159 83 237 161
-161 160 84 238 162
-162 161 85 239 163
-163 162 86 240 164
-164 165 163 87 241
-165 88 242 166 164
-166 165 89 243 167
-167 166 90 244 168
-168 167 91 245 169
-169 168 92 246 170
-170 169 93 247 171
-171 1 170 94 172
-172 2 171 95 173
-173 3 172 96 174
-174 4 173 97 175
-175 176 5 174 98
-176 99 177 6 175
-177 176 100 178 7
-178 177 101 179 8
-179 178 102 180 9
-180 179 103 181 10
-181 11 180 104 182
-182 12 181 105 183
-183 13 182 106 184
-184 14 183 107 185
-185 15 184 108 186
-186 187 16 185 109
-187 110 188 17 186
-188 187 111 189 18
-189 188 112 190 19
-190 189 113 191 20
-191 190 114 192 21
-192 22 191 115 193
-193 23 192 116 194
-194 24 193 117 195
-195 25 194 118 196
-196 26 195 119 197
-197 198 27 196 120
-198 121 199 28 197
-199 198 122 200 29
-200 199 123 201 30
-201 200 124 202 31
-202 201 125 203 32
-203 33 202 126 204
-204 34 203 127 205
-205 35 204 128 206
-206 36 205 129 207
-207 37 206 130 208
-208 209 38 207 131
-209 132 210 39 208
-210 209 133 211 40
-211 210 134 212 41
-212 211 135 213 42
-213 212 136 214 43
-214 44 213 137 215
-215 45 214 138 216
-216 46 215 139 217
-217 47 216 140 218
-218 48 217 141 219
-219 220 49 218 142
-220 143 221 50 219
-221 220 144 222 51
-222 221 145 223 52
-223 222 146 224 53
-224 223 147 225 54
-225 55 224 148 226
-226 56 225 149 227
-227 57 226 150 228
-228 58 227 151 229
-229 59 228 152 230
-230 231 60 229 153
-231 154 232 61 230
-232 231 155 233 62
-233 232 156 234 63
-234 233 157 235 64
-235 234 158 236 65
-236 66 235 159 237
-237 67 236 160 238
-238 68 237 161 239
-239 69 238 162 240
-240 70 239 163 241
-241 242 71 240 164
-242 165 243 72 241
-243 242 166 244 73
-244 243 167 245 74
-245 244 168 246 75
-246 245 169 247 76
-247 77 1 246 170
0