[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 248, 2 ] =
C_248(1,61).
(I) Following is a form readable by MAGMA:
g:=Graph<248|{ {2, 3}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238,
239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227},
{224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212,
213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201},
{198, 199}, {196, 197}, {194, 195}, {192, 193}, {100, 101}, {98, 99}, {96, 97},
{94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81},
{78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65},
{62, 63}, {60, 61}, {58, 59}, {56, 57}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12,
13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28,
29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44,
45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {102, 103}, {104, 105},
{106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118,
119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131},
{132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144,
145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157},
{158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170,
171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183},
{184, 185}, {186, 187}, {188, 189}, {190, 191}, {1, 2}, {245, 246}, {241, 242},
{237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213,
214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {97, 98}, {93,
94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61,
62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29,
30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {101, 102},
{105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129,
130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154},
{157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181,
182}, {185, 186}, {189, 190}, {3, 4}, {243, 244}, {235, 236}, {227, 228}, {219,
220}, {211, 212}, {203, 204}, {195, 196}, {99, 100}, {91, 92}, {83, 84}, {75,
76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51,
52}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148},
{155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {7, 8}, {247, 248},
{231, 232}, {215, 216}, {199, 200}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39,
40}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184},
{15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144},
{175, 176}, {2, 63}, {66, 127}, {64, 125}, {128, 189}, {130, 191}, {1, 62},
{223, 224}, {95, 96}, {65, 126}, {31, 32}, {129, 190}, {159, 160}, {3, 64}, {63,
124}, {59, 120}, {55, 116}, {7, 68}, {11, 72}, {15, 76}, {19, 80}, {23, 84},
{27, 88}, {31, 92}, {35, 96}, {39, 100}, {43, 104}, {47, 108}, {51, 112}, {131,
192}, {135, 196}, {139, 200}, {143, 204}, {147, 208}, {151, 212}, {155, 216},
{159, 220}, {163, 224}, {167, 228}, {171, 232}, {175, 236}, {179, 240}, {183,
244}, {187, 248}, {4, 65}, {62, 123}, {60, 121}, {54, 115}, {6, 67}, {12, 73},
{14, 75}, {20, 81}, {22, 83}, {28, 89}, {30, 91}, {36, 97}, {38, 99}, {44, 105},
{46, 107}, {52, 113}, {132, 193}, {134, 195}, {140, 201}, {142, 203}, {148,
209}, {150, 211}, {156, 217}, {158, 219}, {164, 225}, {166, 227}, {172, 233},
{174, 235}, {180, 241}, {182, 243}, {5, 66}, {61, 122}, {13, 74}, {21, 82}, {29,
90}, {37, 98}, {45, 106}, {53, 114}, {133, 194}, {141, 202}, {149, 210}, {157,
218}, {165, 226}, {173, 234}, {181, 242}, {8, 69}, {58, 119}, {56, 117}, {10,
71}, {24, 85}, {26, 87}, {40, 101}, {42, 103}, {136, 197}, {138, 199}, {152,
213}, {154, 215}, {168, 229}, {170, 231}, {184, 245}, {186, 247}, {9, 70}, {57,
118}, {25, 86}, {41, 102}, {137, 198}, {153, 214}, {169, 230}, {185, 246}, {16,
77}, {18, 79}, {48, 109}, {50, 111}, {144, 205}, {146, 207}, {176, 237}, {178,
239}, {17, 78}, {49, 110}, {145, 206}, {177, 238}, {32, 93}, {34, 95}, {160,
221}, {162, 223}, {33, 94}, {191, 192}, {63, 64}, {161, 222}, {4, 191}, {1,
188}, {3, 190}, {2, 189}, {67, 128}, {99, 160}, {95, 156}, {91, 152}, {87, 148},
{83, 144}, {79, 140}, {75, 136}, {71, 132}, {103, 164}, {107, 168}, {111, 172},
{115, 176}, {119, 180}, {123, 184}, {127, 188}, {5, 192}, {100, 161}, {94, 155},
{92, 153}, {86, 147}, {84, 145}, {78, 139}, {76, 137}, {70, 131}, {68, 129},
{61, 248}, {55, 242}, {7, 194}, {13, 200}, {15, 202}, {21, 208}, {23, 210}, {29,
216}, {31, 218}, {37, 224}, {39, 226}, {45, 232}, {47, 234}, {53, 240}, {102,
163}, {108, 169}, {110, 171}, {116, 177}, {118, 179}, {124, 185}, {126, 187},
{6, 193}, {93, 154}, {85, 146}, {77, 138}, {69, 130}, {54, 241}, {14, 201}, {22,
209}, {30, 217}, {38, 225}, {46, 233}, {101, 162}, {109, 170}, {117, 178}, {125,
186}, {8, 195}, {60, 247}, {56, 243}, {12, 199}, {24, 211}, {28, 215}, {40,
227}, {44, 231}, {9, 196}, {90, 151}, {88, 149}, {74, 135}, {72, 133}, {59,
246}, {57, 244}, {11, 198}, {25, 212}, {27, 214}, {41, 228}, {43, 230}, {104,
165}, {106, 167}, {120, 181}, {122, 183}, {10, 197}, {89, 150}, {73, 134}, {58,
245}, {26, 213}, {42, 229}, {105, 166}, {121, 182}, {16, 203}, {20, 207}, {48,
235}, {52, 239}, {17, 204}, {82, 143}, {80, 141}, {19, 206}, {49, 236}, {51,
238}, {112, 173}, {114, 175}, {18, 205}, {81, 142}, {50, 237}, {113, 174}, {1,
248}, {32, 219}, {36, 223}, {33, 220}, {98, 159}, {96, 157}, {35, 222}, {34,
221}, {97, 158}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 62)(3, 123)(4, 184)(5, 245)(6, 58)(7, 119)(8, 180)(9, 241)(10, 54)(11,
115)(12, 176)(13, 237)(14, 50)(15, 111)(16, 172)(17, 233)(18, 46)(19, 107)(20,
168)(21, 229)(22, 42)(23, 103)(24, 164)(25, 225)(26, 38)(27, 99)(28, 160)(29,
221)(30, 34)(31, 95)(32, 156)(33, 217)(35, 91)(36, 152)(37, 213)(39, 87)(40,
148)(41, 209)(43, 83)(44, 144)(45, 205)(47, 79)(48, 140)(49, 201)(51, 75)(52,
136)(53, 197)(55, 71)(56, 132)(57, 193)(59, 67)(60, 128)(61, 189)(64, 124)(65,
185)(66, 246)(68, 120)(69, 181)(70, 242)(72, 116)(73, 177)(74, 238)(76, 112)(77,
173)(78, 234)(80, 108)(81, 169)(82, 230)(84, 104)(85, 165)(86, 226)(88, 100)(89,
161)(90, 222)(92, 96)(93, 157)(94, 218)(97, 153)(98, 214)(101, 149)(102,
210)(105, 145)(106, 206)(109, 141)(110, 202)(113, 137)(114, 198)(117, 133)(118,
194)(121, 129)(122, 190)(126, 186)(127, 247)(130, 182)(131, 243)(134, 178)(135,
239)(138, 174)(139, 235)(142, 170)(143, 231)(146, 166)(147, 227)(150, 162)(151,
223)(154, 158)(155, 219)(159, 215)(163, 211)(167, 207)(171, 203)(175, 199)(179,
195)(183, 191)(188, 248)(192, 244)(196, 240)(200, 236)(204, 232)(208, 228)(212,
224)(216, 220) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248)
c: (2, 188)(3, 127)(4, 66)(6, 192)(7, 131)(8, 70)(10, 196)(11, 135)(12, 74)(14,
200)(15, 139)(16, 78)(18, 204)(19, 143)(20, 82)(22, 208)(23, 147)(24, 86)(26,
212)(27, 151)(28, 90)(30, 216)(31, 155)(32, 94)(34, 220)(35, 159)(36, 98)(38,
224)(39, 163)(40, 102)(42, 228)(43, 167)(44, 106)(46, 232)(47, 171)(48, 110)(50,
236)(51, 175)(52, 114)(54, 240)(55, 179)(56, 118)(58, 244)(59, 183)(60, 122)(62,
248)(63, 187)(64, 126)(67, 191)(68, 130)(71, 195)(72, 134)(75, 199)(76, 138)(79,
203)(80, 142)(83, 207)(84, 146)(87, 211)(88, 150)(91, 215)(92, 154)(95, 219)(96,
158)(99, 223)(100, 162)(103, 227)(104, 166)(107, 231)(108, 170)(111, 235)(112,
174)(115, 239)(116, 178)(119, 243)(120, 182)(123, 247)(124, 186)(128, 190)(132,
194)(136, 198)(140, 202)(144, 206)(148, 210)(152, 214)(156, 218)(160, 222)(164,
226)(168, 230)(172, 234)(176, 238)(180, 242)(184, 246)
C4[ 248, 2 ]
248
-1 188 2 248 62
-2 1 189 3 63
-3 2 190 4 64
-4 3 191 5 65
-5 66 4 192 6
-6 67 5 193 7
-7 68 6 194 8
-8 69 7 195 9
-9 70 8 196 10
-10 11 71 9 197
-11 198 12 72 10
-12 11 199 13 73
-13 12 200 14 74
-14 13 201 15 75
-15 14 202 16 76
-16 77 15 203 17
-17 78 16 204 18
-18 79 17 205 19
-19 80 18 206 20
-20 81 19 207 21
-21 22 82 20 208
-22 209 23 83 21
-23 22 210 24 84
-24 23 211 25 85
-25 24 212 26 86
-26 25 213 27 87
-27 88 26 214 28
-28 89 27 215 29
-29 90 28 216 30
-30 91 29 217 31
-31 92 30 218 32
-32 33 93 31 219
-33 220 34 94 32
-34 33 221 35 95
-35 34 222 36 96
-36 35 223 37 97
-37 36 224 38 98
-38 99 37 225 39
-39 100 38 226 40
-40 101 39 227 41
-41 102 40 228 42
-42 103 41 229 43
-43 44 104 42 230
-44 231 45 105 43
-45 44 232 46 106
-46 45 233 47 107
-47 46 234 48 108
-48 47 235 49 109
-49 110 48 236 50
-50 111 49 237 51
-51 112 50 238 52
-52 113 51 239 53
-53 114 52 240 54
-54 55 115 53 241
-55 242 56 116 54
-56 55 243 57 117
-57 56 244 58 118
-58 57 245 59 119
-59 58 246 60 120
-60 121 59 247 61
-61 122 60 248 62
-62 1 123 61 63
-63 2 124 62 64
-64 3 125 63 65
-65 66 4 126 64
-66 67 5 127 65
-67 66 68 6 128
-68 67 69 7 129
-69 68 70 8 130
-70 69 71 9 131
-71 132 70 72 10
-72 11 133 71 73
-73 12 134 72 74
-74 13 135 73 75
-75 14 136 74 76
-76 77 15 137 75
-77 78 16 138 76
-78 77 79 17 139
-79 78 80 18 140
-80 79 81 19 141
-81 80 82 20 142
-82 143 81 83 21
-83 22 144 82 84
-84 23 145 83 85
-85 24 146 84 86
-86 25 147 85 87
-87 88 26 148 86
-88 89 27 149 87
-89 88 90 28 150
-90 89 91 29 151
-91 90 92 30 152
-92 91 93 31 153
-93 154 92 94 32
-94 33 155 93 95
-95 34 156 94 96
-96 35 157 95 97
-97 36 158 96 98
-98 99 37 159 97
-99 100 38 160 98
-100 99 101 39 161
-101 100 102 40 162
-102 101 103 41 163
-103 102 104 42 164
-104 165 103 105 43
-105 44 166 104 106
-106 45 167 105 107
-107 46 168 106 108
-108 47 169 107 109
-109 110 48 170 108
-110 111 49 171 109
-111 110 112 50 172
-112 111 113 51 173
-113 112 114 52 174
-114 113 115 53 175
-115 176 114 116 54
-116 55 177 115 117
-117 56 178 116 118
-118 57 179 117 119
-119 58 180 118 120
-120 121 59 181 119
-121 122 60 182 120
-122 121 123 61 183
-123 122 124 62 184
-124 123 125 63 185
-125 124 126 64 186
-126 187 125 127 65
-127 66 188 126 128
-128 67 189 127 129
-129 68 190 128 130
-130 69 191 129 131
-131 132 70 192 130
-132 133 71 193 131
-133 132 134 72 194
-134 133 135 73 195
-135 134 136 74 196
-136 135 137 75 197
-137 198 136 138 76
-138 77 199 137 139
-139 78 200 138 140
-140 79 201 139 141
-141 80 202 140 142
-142 143 81 203 141
-143 144 82 204 142
-144 143 145 83 205
-145 144 146 84 206
-146 145 147 85 207
-147 146 148 86 208
-148 209 147 149 87
-149 88 210 148 150
-150 89 211 149 151
-151 90 212 150 152
-152 91 213 151 153
-153 154 92 214 152
-154 155 93 215 153
-155 154 156 94 216
-156 155 157 95 217
-157 156 158 96 218
-158 157 159 97 219
-159 220 158 160 98
-160 99 221 159 161
-161 100 222 160 162
-162 101 223 161 163
-163 102 224 162 164
-164 165 103 225 163
-165 166 104 226 164
-166 165 167 105 227
-167 166 168 106 228
-168 167 169 107 229
-169 168 170 108 230
-170 231 169 171 109
-171 110 232 170 172
-172 111 233 171 173
-173 112 234 172 174
-174 113 235 173 175
-175 176 114 236 174
-176 177 115 237 175
-177 176 178 116 238
-178 177 179 117 239
-179 178 180 118 240
-180 179 181 119 241
-181 242 180 182 120
-182 121 243 181 183
-183 122 244 182 184
-184 123 245 183 185
-185 124 246 184 186
-186 187 125 247 185
-187 188 126 248 186
-188 187 1 189 127
-189 188 2 190 128
-190 189 3 191 129
-191 190 4 192 130
-192 191 5 193 131
-193 132 192 6 194
-194 133 193 7 195
-195 134 194 8 196
-196 135 195 9 197
-197 198 136 196 10
-198 11 199 137 197
-199 198 12 200 138
-200 199 13 201 139
-201 200 14 202 140
-202 201 15 203 141
-203 202 16 204 142
-204 143 203 17 205
-205 144 204 18 206
-206 145 205 19 207
-207 146 206 20 208
-208 209 147 207 21
-209 22 210 148 208
-210 209 23 211 149
-211 210 24 212 150
-212 211 25 213 151
-213 212 26 214 152
-214 213 27 215 153
-215 154 214 28 216
-216 155 215 29 217
-217 156 216 30 218
-218 157 217 31 219
-219 220 158 218 32
-220 33 221 159 219
-221 220 34 222 160
-222 221 35 223 161
-223 222 36 224 162
-224 223 37 225 163
-225 224 38 226 164
-226 165 225 39 227
-227 166 226 40 228
-228 167 227 41 229
-229 168 228 42 230
-230 231 169 229 43
-231 44 232 170 230
-232 231 45 233 171
-233 232 46 234 172
-234 233 47 235 173
-235 234 48 236 174
-236 235 49 237 175
-237 176 236 50 238
-238 177 237 51 239
-239 178 238 52 240
-240 179 239 53 241
-241 242 180 240 54
-242 55 243 181 241
-243 242 56 244 182
-244 243 57 245 183
-245 244 58 246 184
-246 245 59 247 185
-247 246 60 248 186
-248 187 1 247 61
0