C4graphGraph forms for C4 [ 248, 3 ] = C_248(1,63)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 248, 3 ] = C_248(1,63).

(I) Following is a form readable by MAGMA:

g:=Graph<248|{ {2, 3}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {1, 2}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {3, 4}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {7, 8}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {223, 224}, {95, 96}, {64, 127}, {128, 191}, {159, 160}, {1, 64}, {63, 126}, {61, 124}, {59, 122}, {57, 120}, {55, 118}, {53, 116}, {3, 66}, {5, 68}, {7, 70}, {9, 72}, {11, 74}, {13, 76}, {15, 78}, {17, 80}, {19, 82}, {21, 84}, {23, 86}, {25, 88}, {27, 90}, {29, 92}, {31, 94}, {33, 96}, {35, 98}, {37, 100}, {39, 102}, {41, 104}, {43, 106}, {45, 108}, {47, 110}, {49, 112}, {51, 114}, {129, 192}, {131, 194}, {133, 196}, {135, 198}, {137, 200}, {139, 202}, {141, 204}, {143, 206}, {145, 208}, {147, 210}, {149, 212}, {151, 214}, {153, 216}, {155, 218}, {157, 220}, {159, 222}, {161, 224}, {163, 226}, {165, 228}, {167, 230}, {169, 232}, {171, 234}, {173, 236}, {175, 238}, {177, 240}, {179, 242}, {181, 244}, {183, 246}, {185, 248}, {2, 65}, {62, 125}, {58, 121}, {54, 117}, {6, 69}, {10, 73}, {14, 77}, {18, 81}, {22, 85}, {26, 89}, {30, 93}, {34, 97}, {38, 101}, {42, 105}, {46, 109}, {50, 113}, {130, 193}, {134, 197}, {138, 201}, {142, 205}, {146, 209}, {150, 213}, {154, 217}, {158, 221}, {162, 225}, {166, 229}, {170, 233}, {174, 237}, {178, 241}, {182, 245}, {4, 67}, {60, 123}, {52, 115}, {12, 75}, {20, 83}, {28, 91}, {36, 99}, {44, 107}, {132, 195}, {140, 203}, {148, 211}, {156, 219}, {164, 227}, {172, 235}, {180, 243}, {8, 71}, {56, 119}, {24, 87}, {40, 103}, {136, 199}, {152, 215}, {168, 231}, {184, 247}, {16, 79}, {48, 111}, {144, 207}, {176, 239}, {32, 95}, {191, 192}, {63, 64}, {160, 223}, {2, 187}, {4, 189}, {6, 191}, {1, 186}, {5, 190}, {3, 188}, {65, 128}, {95, 158}, {93, 156}, {91, 154}, {89, 152}, {87, 150}, {85, 148}, {83, 146}, {81, 144}, {79, 142}, {77, 140}, {75, 138}, {73, 136}, {71, 134}, {69, 132}, {67, 130}, {97, 160}, {99, 162}, {101, 164}, {103, 166}, {105, 168}, {107, 170}, {109, 172}, {111, 174}, {113, 176}, {115, 178}, {117, 180}, {119, 182}, {121, 184}, {123, 186}, {125, 188}, {127, 190}, {66, 129}, {94, 157}, {90, 153}, {86, 149}, {82, 145}, {78, 141}, {74, 137}, {70, 133}, {98, 161}, {102, 165}, {106, 169}, {110, 173}, {114, 177}, {118, 181}, {122, 185}, {126, 189}, {7, 192}, {92, 155}, {84, 147}, {76, 139}, {68, 131}, {63, 248}, {55, 240}, {15, 200}, {23, 208}, {31, 216}, {39, 224}, {47, 232}, {100, 163}, {108, 171}, {116, 179}, {124, 187}, {8, 193}, {62, 247}, {60, 245}, {58, 243}, {56, 241}, {10, 195}, {12, 197}, {14, 199}, {24, 209}, {26, 211}, {28, 213}, {30, 215}, {40, 225}, {42, 227}, {44, 229}, {46, 231}, {9, 194}, {61, 246}, {57, 242}, {13, 198}, {25, 210}, {29, 214}, {41, 226}, {45, 230}, {11, 196}, {88, 151}, {72, 135}, {59, 244}, {27, 212}, {43, 228}, {104, 167}, {120, 183}, {16, 201}, {54, 239}, {52, 237}, {18, 203}, {20, 205}, {22, 207}, {48, 233}, {50, 235}, {17, 202}, {53, 238}, {21, 206}, {49, 234}, {19, 204}, {80, 143}, {51, 236}, {112, 175}, {1, 248}, {32, 217}, {34, 219}, {36, 221}, {38, 223}, {33, 218}, {37, 222}, {35, 220}, {96, 159}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 64)(3, 127)(4, 190)(6, 68)(7, 131)(8, 194)(10, 72)(11, 135)(12, 198)(14, 76)(15, 139)(16, 202)(18, 80)(19, 143)(20, 206)(22, 84)(23, 147)(24, 210)(26, 88)(27, 151)(28, 214)(30, 92)(31, 155)(32, 218)(34, 96)(35, 159)(36, 222)(38, 100)(39, 163)(40, 226)(42, 104)(43, 167)(44, 230)(46, 108)(47, 171)(48, 234)(50, 112)(51, 175)(52, 238)(54, 116)(55, 179)(56, 242)(58, 120)(59, 183)(60, 246)(62, 124)(63, 187)(66, 128)(67, 191)(70, 132)(71, 195)(74, 136)(75, 199)(78, 140)(79, 203)(82, 144)(83, 207)(86, 148)(87, 211)(90, 152)(91, 215)(94, 156)(95, 219)(98, 160)(99, 223)(102, 164)(103, 227)(106, 168)(107, 231)(110, 172)(111, 235)(114, 176)(115, 239)(118, 180)(119, 243)(122, 184)(123, 247)(126, 188)(130, 192)(134, 196)(138, 200)(142, 204)(146, 208)(150, 212)(154, 216)(158, 220)(162, 224)(166, 228)(170, 232)(174, 236)(178, 240)(182, 244)(186, 248)
b: (2, 186)(3, 123)(4, 60)(5, 245)(6, 182)(7, 119)(8, 56)(9, 241)(10, 178)(11, 115)(12, 52)(13, 237)(14, 174)(15, 111)(16, 48)(17, 233)(18, 170)(19, 107)(20, 44)(21, 229)(22, 166)(23, 103)(24, 40)(25, 225)(26, 162)(27, 99)(28, 36)(29, 221)(30, 158)(31, 95)(33, 217)(34, 154)(35, 91)(37, 213)(38, 150)(39, 87)(41, 209)(42, 146)(43, 83)(45, 205)(46, 142)(47, 79)(49, 201)(50, 138)(51, 75)(53, 197)(54, 134)(55, 71)(57, 193)(58, 130)(59, 67)(61, 189)(62, 126)(64, 248)(65, 185)(66, 122)(68, 244)(69, 181)(70, 118)(72, 240)(73, 177)(74, 114)(76, 236)(77, 173)(78, 110)(80, 232)(81, 169)(82, 106)(84, 228)(85, 165)(86, 102)(88, 224)(89, 161)(90, 98)(92, 220)(93, 157)(96, 216)(97, 153)(100, 212)(101, 149)(104, 208)(105, 145)(108, 204)(109, 141)(112, 200)(113, 137)(116, 196)(117, 133)(120, 192)(121, 129)(124, 188)(127, 247)(128, 184)(131, 243)(132, 180)(135, 239)(136, 176)(139, 235)(140, 172)(143, 231)(144, 168)(147, 227)(148, 164)(151, 223)(152, 160)(155, 219)(159, 215)(163, 211)(167, 207)(171, 203)(175, 199)(179, 195)(183, 191)(190, 246)(194, 242)(198, 238)(202, 234)(206, 230)(210, 226)(214, 222)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 248, 3 ]
248
-1 2 248 64 186
-2 187 1 3 65
-3 66 188 2 4
-4 67 189 3 5
-5 68 190 4 6
-6 69 191 5 7
-7 70 192 6 8
-8 71 193 7 9
-9 72 194 8 10
-10 11 73 195 9
-11 12 74 196 10
-12 11 13 75 197
-13 198 12 14 76
-14 77 199 13 15
-15 78 200 14 16
-16 79 201 15 17
-17 80 202 16 18
-18 81 203 17 19
-19 82 204 18 20
-20 83 205 19 21
-21 22 84 206 20
-22 23 85 207 21
-23 22 24 86 208
-24 209 23 25 87
-25 88 210 24 26
-26 89 211 25 27
-27 90 212 26 28
-28 91 213 27 29
-29 92 214 28 30
-30 93 215 29 31
-31 94 216 30 32
-32 33 95 217 31
-33 34 96 218 32
-34 33 35 97 219
-35 220 34 36 98
-36 99 221 35 37
-37 100 222 36 38
-38 101 223 37 39
-39 102 224 38 40
-40 103 225 39 41
-41 104 226 40 42
-42 105 227 41 43
-43 44 106 228 42
-44 45 107 229 43
-45 44 46 108 230
-46 231 45 47 109
-47 110 232 46 48
-48 111 233 47 49
-49 112 234 48 50
-50 113 235 49 51
-51 114 236 50 52
-52 115 237 51 53
-53 116 238 52 54
-54 55 117 239 53
-55 56 118 240 54
-56 55 57 119 241
-57 242 56 58 120
-58 121 243 57 59
-59 122 244 58 60
-60 123 245 59 61
-61 124 246 60 62
-62 125 247 61 63
-63 126 248 62 64
-64 1 127 63 65
-65 66 2 128 64
-66 67 3 129 65
-67 66 68 4 130
-68 67 69 5 131
-69 132 68 70 6
-70 133 69 71 7
-71 134 70 72 8
-72 135 71 73 9
-73 136 72 74 10
-74 11 137 73 75
-75 12 138 74 76
-76 77 13 139 75
-77 78 14 140 76
-78 77 79 15 141
-79 78 80 16 142
-80 143 79 81 17
-81 144 80 82 18
-82 145 81 83 19
-83 146 82 84 20
-84 147 83 85 21
-85 22 148 84 86
-86 23 149 85 87
-87 88 24 150 86
-88 89 25 151 87
-89 88 90 26 152
-90 89 91 27 153
-91 154 90 92 28
-92 155 91 93 29
-93 156 92 94 30
-94 157 93 95 31
-95 158 94 96 32
-96 33 159 95 97
-97 34 160 96 98
-98 99 35 161 97
-99 100 36 162 98
-100 99 101 37 163
-101 100 102 38 164
-102 165 101 103 39
-103 166 102 104 40
-104 167 103 105 41
-105 168 104 106 42
-106 169 105 107 43
-107 44 170 106 108
-108 45 171 107 109
-109 110 46 172 108
-110 111 47 173 109
-111 110 112 48 174
-112 111 113 49 175
-113 176 112 114 50
-114 177 113 115 51
-115 178 114 116 52
-116 179 115 117 53
-117 180 116 118 54
-118 55 181 117 119
-119 56 182 118 120
-120 121 57 183 119
-121 122 58 184 120
-122 121 123 59 185
-123 122 124 60 186
-124 187 123 125 61
-125 188 124 126 62
-126 189 125 127 63
-127 190 126 128 64
-128 191 127 129 65
-129 66 192 128 130
-130 67 193 129 131
-131 132 68 194 130
-132 133 69 195 131
-133 132 134 70 196
-134 133 135 71 197
-135 198 134 136 72
-136 199 135 137 73
-137 200 136 138 74
-138 201 137 139 75
-139 202 138 140 76
-140 77 203 139 141
-141 78 204 140 142
-142 143 79 205 141
-143 144 80 206 142
-144 143 145 81 207
-145 144 146 82 208
-146 209 145 147 83
-147 210 146 148 84
-148 211 147 149 85
-149 212 148 150 86
-150 213 149 151 87
-151 88 214 150 152
-152 89 215 151 153
-153 154 90 216 152
-154 155 91 217 153
-155 154 156 92 218
-156 155 157 93 219
-157 220 156 158 94
-158 221 157 159 95
-159 222 158 160 96
-160 223 159 161 97
-161 224 160 162 98
-162 99 225 161 163
-163 100 226 162 164
-164 165 101 227 163
-165 166 102 228 164
-166 165 167 103 229
-167 166 168 104 230
-168 231 167 169 105
-169 232 168 170 106
-170 233 169 171 107
-171 234 170 172 108
-172 235 171 173 109
-173 110 236 172 174
-174 111 237 173 175
-175 176 112 238 174
-176 177 113 239 175
-177 176 178 114 240
-178 177 179 115 241
-179 242 178 180 116
-180 243 179 181 117
-181 244 180 182 118
-182 245 181 183 119
-183 246 182 184 120
-184 121 247 183 185
-185 122 248 184 186
-186 187 1 123 185
-187 188 2 124 186
-188 187 189 3 125
-189 188 190 4 126
-190 189 191 5 127
-191 190 192 6 128
-192 191 193 7 129
-193 192 194 8 130
-194 193 195 9 131
-195 132 194 196 10
-196 11 133 195 197
-197 198 12 134 196
-198 199 13 135 197
-199 198 200 14 136
-200 199 201 15 137
-201 200 202 16 138
-202 201 203 17 139
-203 202 204 18 140
-204 203 205 19 141
-205 204 206 20 142
-206 143 205 207 21
-207 22 144 206 208
-208 209 23 145 207
-209 210 24 146 208
-210 209 211 25 147
-211 210 212 26 148
-212 211 213 27 149
-213 212 214 28 150
-214 213 215 29 151
-215 214 216 30 152
-216 215 217 31 153
-217 154 216 218 32
-218 33 155 217 219
-219 220 34 156 218
-220 221 35 157 219
-221 220 222 36 158
-222 221 223 37 159
-223 222 224 38 160
-224 223 225 39 161
-225 224 226 40 162
-226 225 227 41 163
-227 226 228 42 164
-228 165 227 229 43
-229 44 166 228 230
-230 231 45 167 229
-231 232 46 168 230
-232 231 233 47 169
-233 232 234 48 170
-234 233 235 49 171
-235 234 236 50 172
-236 235 237 51 173
-237 236 238 52 174
-238 237 239 53 175
-239 176 238 240 54
-240 55 177 239 241
-241 242 56 178 240
-242 243 57 179 241
-243 242 244 58 180
-244 243 245 59 181
-245 244 246 60 182
-246 245 247 61 183
-247 246 248 62 184
-248 1 247 63 185
0

**************