C4graphGraph forms for C4 [ 249, 1 ] = C_249(1,82)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 249, 1 ] = C_249(1,82).

(I) Following is a form readable by MAGMA:

g:=Graph<249|{ {2, 3}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {198, 199}, {200, 201}, {1, 2}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {3, 4}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {195, 196}, {7, 8}, {247, 248}, {231, 232}, {215, 216}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {199, 200}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {1, 83}, {4, 86}, {5, 87}, {8, 90}, {9, 91}, {12, 94}, {13, 95}, {32, 114}, {33, 115}, {36, 118}, {37, 119}, {40, 122}, {41, 123}, {44, 126}, {45, 127}, {128, 210}, {129, 211}, {132, 214}, {133, 215}, {136, 218}, {137, 219}, {140, 222}, {141, 223}, {160, 242}, {161, 243}, {164, 246}, {165, 247}, {2, 84}, {3, 85}, {10, 92}, {11, 93}, {34, 116}, {35, 117}, {42, 124}, {43, 125}, {130, 212}, {131, 213}, {138, 220}, {139, 221}, {162, 244}, {163, 245}, {6, 88}, {7, 89}, {38, 120}, {39, 121}, {134, 216}, {135, 217}, {166, 248}, {167, 249}, {14, 96}, {15, 97}, {30, 112}, {31, 113}, {142, 224}, {143, 225}, {158, 240}, {159, 241}, {16, 98}, {17, 99}, {20, 102}, {21, 103}, {24, 106}, {25, 107}, {28, 110}, {29, 111}, {144, 226}, {145, 227}, {148, 230}, {149, 231}, {152, 234}, {153, 235}, {156, 238}, {157, 239}, {18, 100}, {19, 101}, {26, 108}, {27, 109}, {146, 228}, {147, 229}, {154, 236}, {155, 237}, {22, 104}, {23, 105}, {150, 232}, {151, 233}, {63, 64}, {191, 192}, {8, 175}, {80, 247}, {72, 239}, {64, 231}, {16, 183}, {24, 191}, {1, 168}, {81, 248}, {71, 238}, {69, 236}, {67, 234}, {65, 232}, {3, 170}, {5, 172}, {7, 174}, {17, 184}, {19, 186}, {21, 188}, {23, 190}, {2, 169}, {82, 249}, {70, 237}, {66, 233}, {6, 173}, {18, 185}, {22, 189}, {46, 128}, {63, 145}, {62, 144}, {47, 129}, {110, 192}, {111, 193}, {126, 208}, {127, 209}, {4, 171}, {68, 235}, {20, 187}, {48, 130}, {61, 143}, {60, 142}, {57, 139}, {56, 138}, {49, 131}, {52, 134}, {53, 135}, {112, 194}, {113, 195}, {116, 198}, {117, 199}, {120, 202}, {121, 203}, {124, 206}, {125, 207}, {50, 132}, {59, 141}, {58, 140}, {51, 133}, {114, 196}, {115, 197}, {122, 204}, {123, 205}, {9, 176}, {79, 246}, {77, 244}, {75, 242}, {73, 240}, {11, 178}, {13, 180}, {15, 182}, {10, 177}, {78, 245}, {74, 241}, {14, 181}, {54, 136}, {55, 137}, {118, 200}, {119, 201}, {12, 179}, {76, 243}, {64, 146}, {77, 159}, {76, 158}, {73, 155}, {72, 154}, {69, 151}, {68, 150}, {65, 147}, {96, 178}, {97, 179}, {100, 182}, {101, 183}, {104, 186}, {105, 187}, {108, 190}, {109, 191}, {66, 148}, {75, 157}, {74, 156}, {67, 149}, {98, 180}, {99, 181}, {106, 188}, {107, 189}, {25, 192}, {63, 230}, {61, 228}, {59, 226}, {57, 224}, {27, 194}, {29, 196}, {31, 198}, {26, 193}, {62, 229}, {58, 225}, {30, 197}, {70, 152}, {71, 153}, {102, 184}, {103, 185}, {28, 195}, {60, 227}, {32, 199}, {56, 223}, {40, 207}, {48, 215}, {33, 200}, {55, 222}, {35, 202}, {37, 204}, {39, 206}, {49, 216}, {51, 218}, {53, 220}, {34, 201}, {38, 205}, {50, 217}, {54, 221}, {78, 160}, {95, 177}, {94, 176}, {79, 161}, {36, 203}, {52, 219}, {80, 162}, {93, 175}, {92, 174}, {89, 171}, {88, 170}, {85, 167}, {84, 166}, {81, 163}, {82, 164}, {91, 173}, {90, 172}, {83, 165}, {1, 249}, {41, 208}, {43, 210}, {45, 212}, {47, 214}, {42, 209}, {46, 213}, {86, 168}, {87, 169}, {44, 211}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249)
b: (2, 168)(3, 86)(5, 171)(6, 89)(8, 174)(9, 92)(11, 177)(12, 95)(14, 180)(15, 98)(17, 183)(18, 101)(20, 186)(21, 104)(23, 189)(24, 107)(26, 192)(27, 110)(29, 195)(30, 113)(32, 198)(33, 116)(35, 201)(36, 119)(38, 204)(39, 122)(41, 207)(42, 125)(44, 210)(45, 128)(47, 213)(48, 131)(50, 216)(51, 134)(53, 219)(54, 137)(56, 222)(57, 140)(59, 225)(60, 143)(62, 228)(63, 146)(65, 231)(66, 149)(68, 234)(69, 152)(71, 237)(72, 155)(74, 240)(75, 158)(77, 243)(78, 161)(80, 246)(81, 164)(83, 249)(84, 167)(87, 170)(90, 173)(93, 176)(96, 179)(99, 182)(102, 185)(105, 188)(108, 191)(111, 194)(114, 197)(117, 200)(120, 203)(123, 206)(126, 209)(129, 212)(132, 215)(135, 218)(138, 221)(141, 224)(144, 227)(147, 230)(150, 233)(153, 236)(156, 239)(159, 242)(162, 245)(165, 248)
c: (2, 83)(3, 165)(4, 247)(5, 80)(6, 162)(7, 244)(8, 77)(9, 159)(10, 241)(11, 74)(12, 156)(13, 238)(14, 71)(15, 153)(16, 235)(17, 68)(18, 150)(19, 232)(20, 65)(21, 147)(22, 229)(23, 62)(24, 144)(25, 226)(26, 59)(27, 141)(28, 223)(29, 56)(30, 138)(31, 220)(32, 53)(33, 135)(34, 217)(35, 50)(36, 132)(37, 214)(38, 47)(39, 129)(40, 211)(41, 44)(42, 126)(43, 208)(45, 123)(46, 205)(48, 120)(49, 202)(51, 117)(52, 199)(54, 114)(55, 196)(57, 111)(58, 193)(60, 108)(61, 190)(63, 105)(64, 187)(66, 102)(67, 184)(69, 99)(70, 181)(72, 96)(73, 178)(75, 93)(76, 175)(78, 90)(79, 172)(81, 87)(82, 169)(85, 166)(86, 248)(88, 163)(89, 245)(91, 160)(92, 242)(94, 157)(95, 239)(97, 154)(98, 236)(100, 151)(101, 233)(103, 148)(104, 230)(106, 145)(107, 227)(109, 142)(110, 224)(112, 139)(113, 221)(115, 136)(116, 218)(118, 133)(119, 215)(121, 130)(122, 212)(124, 127)(125, 209)(128, 206)(131, 203)(134, 200)(137, 197)(140, 194)(143, 191)(146, 188)(149, 185)(152, 182)(155, 179)(158, 176)(161, 173)(164, 170)(168, 249)(171, 246)(174, 243)(177, 240)(180, 237)(183, 234)(186, 231)(189, 228)(192, 225)(195, 222)(198, 219)(201, 216)(204, 213)(207, 210)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 249, 1 ]
249
-1 2 168 83 249
-2 1 3 169 84
-3 2 4 170 85
-4 3 5 171 86
-5 4 6 172 87
-6 88 5 7 173
-7 89 6 8 174
-8 90 7 9 175
-9 176 91 8 10
-10 11 177 92 9
-11 12 178 93 10
-12 11 13 179 94
-13 12 14 180 95
-14 13 15 181 96
-15 14 16 182 97
-16 15 17 183 98
-17 99 16 18 184
-18 100 17 19 185
-19 101 18 20 186
-20 187 102 19 21
-21 22 188 103 20
-22 23 189 104 21
-23 22 24 190 105
-24 23 25 191 106
-25 24 26 192 107
-26 25 27 193 108
-27 26 28 194 109
-28 110 27 29 195
-29 111 28 30 196
-30 112 29 31 197
-31 198 113 30 32
-32 33 199 114 31
-33 34 200 115 32
-34 33 35 201 116
-35 34 36 202 117
-36 35 37 203 118
-37 36 38 204 119
-38 37 39 205 120
-39 121 38 40 206
-40 122 39 41 207
-41 123 40 42 208
-42 209 124 41 43
-43 44 210 125 42
-44 45 211 126 43
-45 44 46 212 127
-46 45 47 213 128
-47 46 48 214 129
-48 47 49 215 130
-49 48 50 216 131
-50 132 49 51 217
-51 133 50 52 218
-52 134 51 53 219
-53 220 135 52 54
-54 55 221 136 53
-55 56 222 137 54
-56 55 57 223 138
-57 56 58 224 139
-58 57 59 225 140
-59 58 60 226 141
-60 59 61 227 142
-61 143 60 62 228
-62 144 61 63 229
-63 145 62 64 230
-64 231 146 63 65
-65 66 232 147 64
-66 67 233 148 65
-67 66 68 234 149
-68 67 69 235 150
-69 68 70 236 151
-70 69 71 237 152
-71 70 72 238 153
-72 154 71 73 239
-73 155 72 74 240
-74 156 73 75 241
-75 242 157 74 76
-76 77 243 158 75
-77 78 244 159 76
-78 77 79 245 160
-79 78 80 246 161
-80 79 81 247 162
-81 80 82 248 163
-82 81 83 249 164
-83 165 1 82 84
-84 166 2 83 85
-85 167 3 84 86
-86 168 4 85 87
-87 88 169 5 86
-88 89 170 6 87
-89 88 90 171 7
-90 89 91 172 8
-91 90 92 173 9
-92 91 93 174 10
-93 11 92 94 175
-94 176 12 93 95
-95 177 13 94 96
-96 178 14 95 97
-97 179 15 96 98
-98 99 180 16 97
-99 100 181 17 98
-100 99 101 182 18
-101 100 102 183 19
-102 101 103 184 20
-103 102 104 185 21
-104 22 103 105 186
-105 187 23 104 106
-106 188 24 105 107
-107 189 25 106 108
-108 190 26 107 109
-109 110 191 27 108
-110 111 192 28 109
-111 110 112 193 29
-112 111 113 194 30
-113 112 114 195 31
-114 113 115 196 32
-115 33 114 116 197
-116 198 34 115 117
-117 199 35 116 118
-118 200 36 117 119
-119 201 37 118 120
-120 121 202 38 119
-121 122 203 39 120
-122 121 123 204 40
-123 122 124 205 41
-124 123 125 206 42
-125 124 126 207 43
-126 44 125 127 208
-127 209 45 126 128
-128 210 46 127 129
-129 211 47 128 130
-130 212 48 129 131
-131 132 213 49 130
-132 133 214 50 131
-133 132 134 215 51
-134 133 135 216 52
-135 134 136 217 53
-136 135 137 218 54
-137 55 136 138 219
-138 220 56 137 139
-139 221 57 138 140
-140 222 58 139 141
-141 223 59 140 142
-142 143 224 60 141
-143 144 225 61 142
-144 143 145 226 62
-145 144 146 227 63
-146 145 147 228 64
-147 146 148 229 65
-148 66 147 149 230
-149 231 67 148 150
-150 232 68 149 151
-151 233 69 150 152
-152 234 70 151 153
-153 154 235 71 152
-154 155 236 72 153
-155 154 156 237 73
-156 155 157 238 74
-157 156 158 239 75
-158 157 159 240 76
-159 77 158 160 241
-160 242 78 159 161
-161 243 79 160 162
-162 244 80 161 163
-163 245 81 162 164
-164 165 246 82 163
-165 166 247 83 164
-166 165 167 248 84
-167 166 168 249 85
-168 1 167 169 86
-169 2 168 170 87
-170 88 3 169 171
-171 89 4 170 172
-172 90 5 171 173
-173 91 6 172 174
-174 92 7 173 175
-175 176 93 8 174
-176 177 94 9 175
-177 176 178 95 10
-178 11 177 179 96
-179 12 178 180 97
-180 13 179 181 98
-181 99 14 180 182
-182 100 15 181 183
-183 101 16 182 184
-184 102 17 183 185
-185 103 18 184 186
-186 187 104 19 185
-187 188 105 20 186
-188 187 189 106 21
-189 22 188 190 107
-190 23 189 191 108
-191 24 190 192 109
-192 110 25 191 193
-193 111 26 192 194
-194 112 27 193 195
-195 113 28 194 196
-196 114 29 195 197
-197 198 115 30 196
-198 199 116 31 197
-199 198 200 117 32
-200 33 199 201 118
-201 34 200 202 119
-202 35 201 203 120
-203 121 36 202 204
-204 122 37 203 205
-205 123 38 204 206
-206 124 39 205 207
-207 125 40 206 208
-208 209 126 41 207
-209 210 127 42 208
-210 209 211 128 43
-211 44 210 212 129
-212 45 211 213 130
-213 46 212 214 131
-214 132 47 213 215
-215 133 48 214 216
-216 134 49 215 217
-217 135 50 216 218
-218 136 51 217 219
-219 220 137 52 218
-220 221 138 53 219
-221 220 222 139 54
-222 55 221 223 140
-223 56 222 224 141
-224 57 223 225 142
-225 143 58 224 226
-226 144 59 225 227
-227 145 60 226 228
-228 146 61 227 229
-229 147 62 228 230
-230 231 148 63 229
-231 232 149 64 230
-232 231 233 150 65
-233 66 232 234 151
-234 67 233 235 152
-235 68 234 236 153
-236 154 69 235 237
-237 155 70 236 238
-238 156 71 237 239
-239 157 72 238 240
-240 158 73 239 241
-241 242 159 74 240
-242 243 160 75 241
-243 242 244 161 76
-244 77 243 245 162
-245 78 244 246 163
-246 79 245 247 164
-247 165 80 246 248
-248 166 81 247 249
-249 1 167 82 248
0

**************