[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 250, 3 ] =
{4,4}_15,5.
(I) Following is a form readable by MAGMA:
g:=Graph<250|{ {2, 3}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240,
241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229},
{226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214,
215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203},
{110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {98, 99}, {96, 97},
{94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81},
{78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65},
{62, 63}, {60, 61}, {58, 59}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14,
15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30,
31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46,
47}, {48, 49}, {52, 53}, {54, 55}, {56, 57}, {112, 113}, {114, 115}, {116, 117},
{118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130,
131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143},
{144, 145}, {146, 147}, {148, 149}, {152, 153}, {154, 155}, {156, 157}, {158,
159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171},
{172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184,
185}, {186, 187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197},
{198, 199}, {1, 2}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234},
{229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205,
206}, {201, 202}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89,
90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57,
58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33,
34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {113, 114}, {117, 118},
{121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145,
146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170},
{173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {197,
198}, {3, 4}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203,
204}, {107, 108}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60},
{11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {115, 116}, {123,
124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172},
{179, 180}, {187, 188}, {195, 196}, {7, 8}, {247, 248}, {231, 232}, {215, 216},
{103, 104}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {119, 120}, {135,
136}, {151, 152}, {167, 168}, {183, 184}, {199, 200}, {15, 16}, {239, 240},
{207, 208}, {111, 112}, {79, 80}, {47, 48}, {143, 144}, {175, 176}, {1, 51},
{77, 127}, {76, 126}, {73, 123}, {72, 122}, {69, 119}, {68, 118}, {65, 115},
{64, 114}, {4, 54}, {5, 55}, {8, 58}, {9, 59}, {12, 62}, {13, 63}, {128, 178},
{129, 179}, {132, 182}, {133, 183}, {136, 186}, {137, 187}, {140, 190}, {141,
191}, {192, 242}, {193, 243}, {196, 246}, {197, 247}, {200, 250}, {1, 50}, {201,
250}, {2, 52}, {75, 125}, {74, 124}, {67, 117}, {66, 116}, {3, 53}, {10, 60},
{11, 61}, {130, 180}, {131, 181}, {138, 188}, {139, 189}, {194, 244}, {195,
245}, {6, 56}, {71, 121}, {70, 120}, {7, 57}, {134, 184}, {135, 185}, {198,
248}, {199, 249}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {14, 64}, {63,
113}, {62, 112}, {15, 65}, {30, 80}, {31, 81}, {46, 96}, {47, 97}, {142, 192},
{143, 193}, {158, 208}, {159, 209}, {174, 224}, {175, 225}, {190, 240}, {191,
241}, {16, 66}, {61, 111}, {60, 110}, {57, 107}, {17, 67}, {20, 70}, {21, 71},
{24, 74}, {25, 75}, {28, 78}, {29, 79}, {48, 98}, {49, 99}, {52, 102}, {53,
103}, {56, 106}, {144, 194}, {145, 195}, {148, 198}, {149, 199}, {152, 202},
{153, 203}, {156, 206}, {157, 207}, {176, 226}, {177, 227}, {180, 230}, {181,
231}, {184, 234}, {185, 235}, {188, 238}, {189, 239}, {18, 68}, {59, 109}, {58,
108}, {19, 69}, {26, 76}, {27, 77}, {50, 100}, {51, 101}, {146, 196}, {147,
197}, {154, 204}, {155, 205}, {178, 228}, {179, 229}, {186, 236}, {187, 237},
{51, 100}, {22, 72}, {23, 73}, {54, 104}, {55, 105}, {150, 200}, {151, 201},
{182, 232}, {183, 233}, {151, 200}, {32, 82}, {33, 83}, {36, 86}, {37, 87}, {40,
90}, {41, 91}, {44, 94}, {45, 95}, {160, 210}, {161, 211}, {164, 214}, {165,
215}, {168, 218}, {169, 219}, {172, 222}, {173, 223}, {34, 84}, {35, 85}, {42,
92}, {43, 93}, {162, 212}, {163, 213}, {170, 220}, {171, 221}, {38, 88}, {39,
89}, {166, 216}, {167, 217}, {63, 64}, {191, 192}, {78, 128}, {110, 160}, {95,
145}, {94, 144}, {79, 129}, {111, 161}, {126, 176}, {127, 177}, {80, 130}, {93,
143}, {92, 142}, {89, 139}, {88, 138}, {85, 135}, {84, 134}, {81, 131}, {112,
162}, {113, 163}, {116, 166}, {117, 167}, {120, 170}, {121, 171}, {124, 174},
{125, 175}, {82, 132}, {91, 141}, {90, 140}, {83, 133}, {114, 164}, {115, 165},
{122, 172}, {123, 173}, {8, 223}, {32, 247}, {1, 216}, {3, 218}, {5, 220}, {7,
222}, {33, 248}, {35, 250}, {2, 217}, {6, 221}, {34, 249}, {86, 136}, {87, 137},
{118, 168}, {119, 169}, {4, 219}, {40, 205}, {42, 207}, {48, 213}, {50, 215},
{41, 206}, {49, 214}, {9, 224}, {11, 226}, {13, 228}, {15, 230}, {25, 240}, {27,
242}, {29, 244}, {31, 246}, {10, 225}, {14, 229}, {26, 241}, {30, 245}, {39,
204}, {36, 201}, {38, 203}, {12, 227}, {28, 243}, {37, 202}, {96, 146}, {109,
159}, {108, 158}, {105, 155}, {104, 154}, {101, 151}, {100, 150}, {97, 147},
{101, 150}, {98, 148}, {107, 157}, {106, 156}, {99, 149}, {16, 231}, {24, 239},
{17, 232}, {19, 234}, {21, 236}, {23, 238}, {18, 233}, {22, 237}, {43, 208},
{47, 212}, {44, 209}, {46, 211}, {102, 152}, {103, 153}, {20, 235}, {45, 210},
{127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 216, 50, 51)(3, 166, 49, 101)(4, 116, 48, 151)(5, 66, 47, 201)(6, 16, 46,
36)(7, 231, 45, 86)(8, 181, 44, 136)(9, 131, 43, 186)(10, 81, 42, 236)(11, 31,
41, 21)(12, 246, 40, 71)(13, 196, 39, 121)(14, 146, 38, 171)(15, 96, 37,
221)(17, 211, 35, 56)(18, 161, 34, 106)(19, 111, 33, 156)(20, 61, 32, 206)(22,
226, 30, 91)(23, 176, 29, 141)(24, 126, 28, 191)(25, 76, 27, 241)(52, 217, 215,
100)(53, 167, 214, 150)(54, 117, 213, 200)(55, 67, 212, 250)(57, 232, 210,
85)(58, 182, 209, 135)(59, 132, 208, 185)(60, 82, 207, 235)(62, 247, 205,
70)(63, 197, 204, 120)(64, 147, 203, 170)(65, 97, 202, 220)(68, 162, 249,
105)(69, 112, 248, 155)(72, 227, 245, 90)(73, 177, 244, 140)(74, 127, 243,
190)(75, 77, 242, 240)(78, 192, 239, 125)(79, 142, 238, 175)(80, 92, 237,
225)(83, 157, 234, 110)(84, 107, 233, 160)(87, 222, 230, 95)(88, 172, 229,
145)(89, 122, 228, 195)(93, 187, 224, 130)(94, 137, 223, 180)(98, 152, 219,
115)(99, 102, 218, 165)(103, 168, 164, 149)(104, 118, 163, 199)(108, 183, 159,
134)(109, 133, 158, 184)(113, 198, 154, 119)(114, 148, 153, 169)(123, 178, 194,
139)(124, 128, 193, 189)(129, 143, 188, 174)(138, 173, 179, 144) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50)(51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
100)(101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,
132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147,
148, 149, 150)(151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163,
164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200)(201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211,
212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243,
244, 245, 246, 247, 248, 249, 250)
C4[ 250, 3 ]
250
-1 2 50 51 216
-2 1 3 52 217
-3 2 4 53 218
-4 3 5 54 219
-5 55 220 4 6
-6 56 221 5 7
-7 57 222 6 8
-8 58 223 7 9
-9 59 224 8 10
-10 11 60 225 9
-11 12 61 226 10
-12 11 13 62 227
-13 12 14 63 228
-14 13 15 64 229
-15 14 16 65 230
-16 66 231 15 17
-17 67 232 16 18
-18 68 233 17 19
-19 69 234 18 20
-20 70 235 19 21
-21 22 71 236 20
-22 23 72 237 21
-23 22 24 73 238
-24 23 25 74 239
-25 24 26 75 240
-26 25 27 76 241
-27 77 242 26 28
-28 78 243 27 29
-29 79 244 28 30
-30 80 245 29 31
-31 81 246 30 32
-32 33 82 247 31
-33 34 83 248 32
-34 33 35 84 249
-35 34 36 85 250
-36 35 201 37 86
-37 36 202 38 87
-38 88 37 203 39
-39 89 38 204 40
-40 90 39 205 41
-41 91 40 206 42
-42 92 41 207 43
-43 44 93 42 208
-44 209 45 94 43
-45 44 210 46 95
-46 45 211 47 96
-47 46 212 48 97
-48 47 213 49 98
-49 99 48 214 50
-50 1 100 49 215
-51 1 100 101 52
-52 2 102 51 53
-53 3 103 52 54
-54 55 4 104 53
-55 56 5 105 54
-56 55 57 6 106
-57 56 58 7 107
-58 57 59 8 108
-59 58 60 9 109
-60 110 59 61 10
-61 11 111 60 62
-62 12 112 61 63
-63 13 113 62 64
-64 14 114 63 65
-65 66 15 115 64
-66 67 16 116 65
-67 66 68 17 117
-68 67 69 18 118
-69 68 70 19 119
-70 69 71 20 120
-71 121 70 72 21
-72 22 122 71 73
-73 23 123 72 74
-74 24 124 73 75
-75 25 125 74 76
-76 77 26 126 75
-77 78 27 127 76
-78 77 79 28 128
-79 78 80 29 129
-80 79 81 30 130
-81 80 82 31 131
-82 132 81 83 32
-83 33 133 82 84
-84 34 134 83 85
-85 35 135 84 86
-86 36 136 85 87
-87 88 37 137 86
-88 89 38 138 87
-89 88 90 39 139
-90 89 91 40 140
-91 90 92 41 141
-92 91 93 42 142
-93 143 92 94 43
-94 44 144 93 95
-95 45 145 94 96
-96 46 146 95 97
-97 47 147 96 98
-98 99 48 148 97
-99 100 49 149 98
-100 99 50 51 150
-101 102 51 150 151
-102 101 103 52 152
-103 102 104 53 153
-104 154 103 105 54
-105 55 155 104 106
-106 56 156 105 107
-107 57 157 106 108
-108 58 158 107 109
-109 110 59 159 108
-110 111 60 160 109
-111 110 112 61 161
-112 111 113 62 162
-113 112 114 63 163
-114 113 115 64 164
-115 165 114 116 65
-116 66 166 115 117
-117 67 167 116 118
-118 68 168 117 119
-119 69 169 118 120
-120 121 70 170 119
-121 122 71 171 120
-122 121 123 72 172
-123 122 124 73 173
-124 123 125 74 174
-125 124 126 75 175
-126 176 125 127 76
-127 77 177 126 128
-128 78 178 127 129
-129 79 179 128 130
-130 80 180 129 131
-131 132 81 181 130
-132 133 82 182 131
-133 132 134 83 183
-134 133 135 84 184
-135 134 136 85 185
-136 135 137 86 186
-137 187 136 138 87
-138 88 188 137 139
-139 89 189 138 140
-140 90 190 139 141
-141 91 191 140 142
-142 143 92 192 141
-143 144 93 193 142
-144 143 145 94 194
-145 144 146 95 195
-146 145 147 96 196
-147 146 148 97 197
-148 198 147 149 98
-149 99 199 148 150
-150 100 101 200 149
-151 101 200 201 152
-152 102 202 151 153
-153 154 103 203 152
-154 155 104 204 153
-155 154 156 105 205
-156 155 157 106 206
-157 156 158 107 207
-158 157 159 108 208
-159 209 158 160 109
-160 110 210 159 161
-161 111 211 160 162
-162 112 212 161 163
-163 113 213 162 164
-164 165 114 214 163
-165 166 115 215 164
-166 165 167 116 216
-167 166 168 117 217
-168 167 169 118 218
-169 168 170 119 219
-170 220 169 171 120
-171 121 221 170 172
-172 122 222 171 173
-173 123 223 172 174
-174 124 224 173 175
-175 176 125 225 174
-176 177 126 226 175
-177 176 178 127 227
-178 177 179 128 228
-179 178 180 129 229
-180 179 181 130 230
-181 231 180 182 131
-182 132 232 181 183
-183 133 233 182 184
-184 134 234 183 185
-185 135 235 184 186
-186 187 136 236 185
-187 188 137 237 186
-188 187 189 138 238
-189 188 190 139 239
-190 189 191 140 240
-191 190 192 141 241
-192 242 191 193 142
-193 143 243 192 194
-194 144 244 193 195
-195 145 245 194 196
-196 146 246 195 197
-197 198 147 247 196
-198 199 148 248 197
-199 198 200 149 249
-200 199 150 151 250
-201 36 202 151 250
-202 201 37 203 152
-203 202 38 204 153
-204 154 203 39 205
-205 155 204 40 206
-206 156 205 41 207
-207 157 206 42 208
-208 209 158 207 43
-209 44 210 159 208
-210 209 45 211 160
-211 210 46 212 161
-212 211 47 213 162
-213 212 48 214 163
-214 213 49 215 164
-215 165 214 50 216
-216 1 166 215 217
-217 2 167 216 218
-218 3 168 217 219
-219 220 4 169 218
-220 221 5 170 219
-221 220 222 6 171
-222 221 223 7 172
-223 222 224 8 173
-224 223 225 9 174
-225 224 226 10 175
-226 11 176 225 227
-227 12 177 226 228
-228 13 178 227 229
-229 14 179 228 230
-230 231 15 180 229
-231 232 16 181 230
-232 231 233 17 182
-233 232 234 18 183
-234 233 235 19 184
-235 234 236 20 185
-236 235 237 21 186
-237 22 187 236 238
-238 23 188 237 239
-239 24 189 238 240
-240 25 190 239 241
-241 242 26 191 240
-242 243 27 192 241
-243 242 244 28 193
-244 243 245 29 194
-245 244 246 30 195
-246 245 247 31 196
-247 246 248 32 197
-248 33 198 247 249
-249 34 199 248 250
-250 35 200 201 249
0