C4graphGraph forms for C4 [ 250, 7 ] = PS(10,25;3)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 250, 7 ] = PS(10,25;3).

(I) Following is a form readable by MAGMA:

g:=Graph<250|{ {100, 102}, {25, 26}, {48, 51}, {49, 52}, {99, 101}, {120, 126}, {121, 127}, {50, 53}, {144, 151}, {68, 77}, {149, 156}, {147, 154}, {145, 152}, {70, 79}, {69, 78}, {224, 235}, {150, 157}, {146, 153}, {192, 204}, {195, 207}, {194, 206}, {193, 205}, {192, 205}, {225, 236}, {194, 207}, {224, 238}, {225, 239}, {67, 76}, {193, 206}, {148, 155}, {64, 80}, {66, 82}, {65, 81}, {67, 83}, {68, 84}, {69, 85}, {70, 86}, {71, 87}, {72, 88}, {73, 89}, {74, 90}, {75, 91}, {133, 151}, {141, 159}, {140, 158}, {137, 155}, {136, 154}, {108, 127}, {199, 212}, {195, 208}, {196, 208}, {199, 211}, {198, 210}, {197, 209}, {107, 126}, {198, 211}, {196, 209}, {170, 191}, {168, 189}, {162, 183}, {160, 181}, {32, 54}, {139, 157}, {138, 156}, {41, 63}, {40, 62}, {33, 55}, {71, 80}, {197, 210}, {169, 190}, {161, 182}, {96, 119}, {2, 26}, {7, 31}, {6, 30}, {5, 29}, {4, 28}, {3, 27}, {72, 81}, {74, 83}, {97, 120}, {99, 122}, {1, 27}, {39, 61}, {38, 60}, {35, 57}, {34, 56}, {5, 31}, {4, 30}, {73, 82}, {167, 188}, {163, 184}, {96, 123}, {98, 121}, {32, 60}, {200, 212}, {175, 179}, {174, 178}, {173, 177}, {172, 176}, {35, 63}, {34, 62}, {33, 61}, {97, 124}, {200, 213}, {166, 187}, {164, 185}, {162, 191}, {160, 189}, {2, 28}, {37, 59}, {36, 58}, {3, 29}, {134, 152}, {135, 153}, {75, 84}, {165, 186}, {161, 190}, {98, 125}, {100, 123}, {128, 160}, {143, 175}, {142, 174}, {141, 173}, {140, 172}, {139, 171}, {138, 170}, {137, 169}, {136, 168}, {135, 167}, {129, 161}, {130, 162}, {131, 163}, {132, 164}, {133, 165}, {134, 166}, {64, 98}, {65, 99}, {151, 180}, {159, 188}, {155, 184}, {28, 56}, {211, 247}, {210, 246}, {209, 245}, {208, 244}, {203, 239}, {202, 238}, {201, 237}, {31, 59}, {30, 58}, {29, 57}, {77, 104}, {158, 187}, {156, 185}, {79, 106}, {85, 112}, {87, 114}, {93, 120}, {95, 122}, {6, 32}, {23, 49}, {22, 48}, {15, 41}, {14, 40}, {7, 33}, {66, 100}, {78, 105}, {208, 247}, {157, 186}, {86, 113}, {94, 121}, {8, 32}, {25, 49}, {24, 48}, {15, 39}, {14, 38}, {13, 37}, {12, 36}, {11, 35}, {10, 34}, {9, 33}, {79, 102}, {211, 250}, {209, 248}, {89, 112}, {91, 114}, {93, 116}, {95, 118}, {8, 34}, {31, 53}, {30, 52}, {24, 50}, {13, 39}, {12, 38}, {9, 35}, {76, 103}, {210, 249}, {159, 180}, {155, 176}, {78, 101}, {88, 115}, {90, 113}, {92, 119}, {94, 117}, {128, 171}, {132, 175}, {26, 54}, {214, 250}, {213, 249}, {212, 248}, {27, 55}, {89, 116}, {158, 179}, {156, 177}, {154, 183}, {152, 181}, {91, 118}, {129, 172}, {131, 174}, {10, 36}, {143, 161}, {142, 160}, {29, 51}, {11, 37}, {90, 117}, {157, 178}, {153, 182}, {92, 115}, {130, 173}, {76, 124}, {77, 125}, {144, 162}, {223, 237}, {222, 236}, {219, 233}, {218, 232}, {215, 229}, {214, 228}, {149, 167}, {148, 166}, {145, 163}, {1, 50}, {215, 226}, {223, 234}, {221, 232}, {146, 164}, {221, 235}, {220, 234}, {213, 227}, {212, 226}, {147, 165}, {80, 103}, {222, 233}, {88, 111}, {16, 40}, {23, 47}, {22, 46}, {21, 45}, {20, 44}, {19, 43}, {18, 42}, {17, 41}, {81, 104}, {207, 246}, {205, 244}, {203, 242}, {201, 240}, {83, 106}, {85, 108}, {87, 110}, {16, 42}, {21, 47}, {20, 46}, {17, 43}, {80, 107}, {220, 231}, {216, 227}, {206, 245}, {202, 241}, {82, 105}, {84, 111}, {86, 109}, {204, 240}, {207, 243}, {206, 242}, {205, 241}, {81, 108}, {219, 230}, {217, 228}, {83, 110}, {18, 44}, {217, 231}, {216, 230}, {150, 168}, {19, 45}, {82, 109}, {218, 229}, {204, 243}, {84, 107}, {27, 74}, {151, 197}, {154, 200}, {26, 73}, {28, 75}, {55, 96}, {56, 97}, {58, 99}, {186, 224}, {187, 225}, {57, 98}, {187, 224}, {188, 225}, {62, 96}, {153, 199}, {152, 198}, {63, 97}, {59, 100}, {52, 86}, {61, 95}, {60, 94}, {57, 91}, {56, 90}, {53, 87}, {163, 192}, {171, 200}, {167, 196}, {36, 64}, {47, 75}, {46, 74}, {45, 73}, {44, 72}, {39, 67}, {38, 66}, {37, 65}, {164, 193}, {186, 223}, {184, 221}, {178, 215}, {176, 213}, {166, 195}, {51, 85}, {185, 223}, {184, 222}, {177, 215}, {176, 214}, {59, 93}, {58, 92}, {165, 194}, {185, 222}, {177, 214}, {52, 93}, {54, 95}, {42, 64}, {183, 221}, {182, 220}, {179, 217}, {178, 216}, {47, 69}, {46, 68}, {43, 65}, {53, 94}, {183, 220}, {179, 216}, {175, 196}, {171, 192}, {40, 68}, {43, 71}, {42, 70}, {41, 69}, {168, 197}, {182, 219}, {180, 217}, {174, 195}, {172, 193}, {170, 199}, {44, 66}, {181, 219}, {180, 218}, {55, 89}, {54, 88}, {45, 67}, {51, 92}, {181, 218}, {173, 194}, {169, 198}, {60, 76}, {63, 79}, {62, 78}, {61, 77}, {191, 204}, {189, 201}, {191, 203}, {190, 202}, {188, 201}, {190, 203}, {48, 70}, {49, 71}, {189, 202}, {50, 72}, {127, 170}, {126, 169}, {126, 158}, {127, 159}, {101, 132}, {103, 134}, {105, 136}, {107, 138}, {109, 140}, {111, 142}, {113, 144}, {115, 146}, {117, 148}, {119, 150}, {102, 133}, {106, 137}, {110, 141}, {114, 145}, {118, 149}, {15, 232}, {23, 240}, {108, 139}, {116, 147}, {2, 235}, {24, 241}, {16, 249}, {14, 231}, {12, 229}, {10, 227}, {6, 239}, {4, 237}, {1, 234}, {25, 242}, {17, 250}, {13, 230}, {9, 226}, {5, 238}, {109, 128}, {111, 130}, {125, 144}, {3, 236}, {11, 228}, {104, 135}, {110, 129}, {18, 226}, {25, 233}, {24, 232}, {23, 231}, {22, 230}, {21, 229}, {20, 228}, {19, 227}, {1, 243}, {8, 250}, {5, 247}, {4, 246}, {112, 131}, {116, 135}, {120, 139}, {124, 143}, {101, 145}, {102, 146}, {103, 147}, {113, 132}, {115, 134}, {121, 140}, {123, 142}, {2, 244}, {3, 245}, {7, 240}, {15, 248}, {114, 133}, {122, 141}, {8, 241}, {22, 239}, {20, 237}, {18, 235}, {16, 233}, {14, 247}, {12, 245}, {10, 243}, {122, 128}, {123, 129}, {9, 242}, {21, 238}, {17, 234}, {13, 246}, {104, 148}, {105, 149}, {106, 150}, {117, 136}, {119, 138}, {6, 248}, {7, 249}, {124, 130}, {125, 131}, {11, 244}, {19, 236}, {112, 143}, {118, 137} }>;

(II) A more general form is to represent the graph as the orbit of {100, 102} under the group generated by the following permutations:

a: (1, 2)(3, 25)(4, 24)(5, 23)(6, 22)(7, 21)(8, 20)(9, 19)(10, 18)(11, 17)(12, 16)(13, 15)(26, 27)(28, 50)(29, 49)(30, 48)(31, 47)(32, 46)(33, 45)(34, 44)(35, 43)(36, 42)(37, 41)(38, 40)(51, 52)(53, 75)(54, 74)(55, 73)(56, 72)(57, 71)(58, 70)(59, 69)(60, 68)(61, 67)(62, 66)(63, 65)(76, 77)(78, 100)(79, 99)(80, 98)(81, 97)(82, 96)(83, 95)(84, 94)(85, 93)(86, 92)(87, 91)(88, 90)(101, 102)(103, 125)(104, 124)(105, 123)(106, 122)(107, 121)(108, 120)(109, 119)(110, 118)(111, 117)(112, 116)(113, 115)(126, 127)(128, 150)(129, 149)(130, 148)(131, 147)(132, 146)(133, 145)(134, 144)(135, 143)(136, 142)(137, 141)(138, 140)(151, 152)(153, 175)(154, 174)(155, 173)(156, 172)(157, 171)(158, 170)(159, 169)(160, 168)(161, 167)(162, 166)(163, 165)(176, 177)(178, 200)(179, 199)(180, 198)(181, 197)(182, 196)(183, 195)(184, 194)(185, 193)(186, 192)(187, 191)(188, 190)(201, 202)(203, 225)(204, 224)(205, 223)(206, 222)(207, 221)(208, 220)(209, 219)(210, 218)(211, 217)(212, 216)(213, 215)(226, 227)(228, 250)(229, 249)(230, 248)(231, 247)(232, 246)(233, 245)(234, 244)(235, 243)(236, 242)(237, 241)(238, 240)
b: (2, 25)(3, 24)(4, 23)(5, 22)(6, 21)(7, 20)(8, 19)(9, 18)(10, 17)(11, 16)(12, 15)(13, 14)(27, 50)(28, 49)(29, 48)(30, 47)(31, 46)(32, 45)(33, 44)(34, 43)(35, 42)(36, 41)(37, 40)(38, 39)(52, 75)(53, 74)(54, 73)(55, 72)(56, 71)(57, 70)(58, 69)(59, 68)(60, 67)(61, 66)(62, 65)(63, 64)(77, 100)(78, 99)(79, 98)(80, 97)(81, 96)(82, 95)(83, 94)(84, 93)(85, 92)(86, 91)(87, 90)(88, 89)(102, 125)(103, 124)(104, 123)(105, 122)(106, 121)(107, 120)(108, 119)(109, 118)(110, 117)(111, 116)(112, 115)(113, 114)(127, 150)(128, 149)(129, 148)(130, 147)(131, 146)(132, 145)(133, 144)(134, 143)(135, 142)(136, 141)(137, 140)(138, 139)(152, 175)(153, 174)(154, 173)(155, 172)(156, 171)(157, 170)(158, 169)(159, 168)(160, 167)(161, 166)(162, 165)(163, 164)(177, 200)(178, 199)(179, 198)(180, 197)(181, 196)(182, 195)(183, 194)(184, 193)(185, 192)(186, 191)(187, 190)(188, 189)(202, 225)(203, 224)(204, 223)(205, 222)(206, 221)(207, 220)(208, 219)(209, 218)(210, 217)(211, 216)(212, 215)(213, 214)(227, 250)(228, 249)(229, 248)(230, 247)(231, 246)(232, 245)(233, 244)(234, 243)(235, 242)(236, 241)(237, 240)(238, 239)
c: (1, 26, 51, 76, 101, 126, 151, 176, 201, 226)(2, 29, 60, 78, 107, 144, 155, 188, 212, 234, 25, 48, 67, 99, 120, 133, 172, 189, 215, 243)(3, 32, 69, 80, 113, 137, 159, 200, 223, 242, 24, 45, 58, 97, 114, 140, 168, 177, 204, 235)(4, 35, 53, 82, 119, 130, 163, 187, 209, 250, 23, 42, 74, 95, 108, 147, 164, 190, 218, 227)(5, 38, 62, 84, 125, 148, 167, 199, 220, 233, 22, 39, 65, 93, 102, 129, 160, 178, 207, 244)(6, 41, 71, 86, 106, 141, 171, 186, 206, 241, 21, 36, 56, 91, 121, 136, 156, 191, 221, 236)(7, 44, 55, 88, 112, 134, 175, 198, 217, 249, 20, 33, 72, 89, 115, 143, 152, 179, 210, 228)(8, 47, 64, 90, 118, 127, 154, 185, 203, 232, 19, 30, 63, 87, 109, 150, 173, 192, 224, 245)(9, 50, 73, 92, 124, 145, 158, 197, 214, 240, 18, 27, 54, 85, 103, 132, 169, 180, 213, 237)(10, 28, 57, 94, 105, 138, 162, 184, 225, 248, 17, 49, 70, 83, 122, 139, 165, 193, 202, 229)(11, 31, 66, 96, 111, 131, 166, 196, 211, 231, 16, 46, 61, 81, 116, 146, 161, 181, 216, 246)(12, 34, 75, 98, 117, 149, 170, 183, 222, 239, 15, 43, 52, 79, 110, 128, 157, 194, 205, 238)(13, 37, 59, 100, 123, 142, 174, 195, 208, 247, 14, 40, 68, 77, 104, 135, 153, 182, 219, 230)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 250, 7 ]
250
-1 243 234 27 50
-2 244 26 235 28
-3 245 27 236 29
-4 246 28 237 30
-5 247 29 238 31
-6 248 30 239 32
-7 33 249 31 240
-8 34 250 32 241
-9 33 242 35 226
-10 34 243 36 227
-11 35 244 37 228
-12 36 245 38 229
-13 37 246 39 230
-14 231 38 247 40
-15 232 39 248 41
-16 233 40 249 42
-17 234 41 250 43
-18 44 235 226 42
-19 45 236 227 43
-20 44 46 237 228
-21 45 47 238 229
-22 46 48 239 230
-23 231 47 49 240
-24 232 48 50 241
-25 242 233 26 49
-26 2 25 73 54
-27 55 1 3 74
-28 56 2 4 75
-29 57 3 5 51
-30 58 4 6 52
-31 59 5 7 53
-32 60 6 8 54
-33 55 61 7 9
-34 56 62 8 10
-35 11 57 63 9
-36 12 58 64 10
-37 11 13 59 65
-38 66 12 14 60
-39 67 13 15 61
-40 68 14 16 62
-41 69 15 17 63
-42 70 16 18 64
-43 71 17 19 65
-44 66 72 18 20
-45 67 73 19 21
-46 22 68 74 20
-47 23 69 75 21
-48 22 24 70 51
-49 23 25 71 52
-50 1 24 72 53
-51 48 92 29 85
-52 49 93 30 86
-53 50 94 31 87
-54 88 26 95 32
-55 33 89 27 96
-56 34 90 28 97
-57 35 91 29 98
-58 99 36 92 30
-59 100 37 93 31
-60 38 94 32 76
-61 33 77 39 95
-62 34 78 40 96
-63 35 79 41 97
-64 36 80 42 98
-65 99 37 81 43
-66 44 100 38 82
-67 45 39 83 76
-68 77 46 40 84
-69 78 47 41 85
-70 79 48 42 86
-71 80 49 43 87
-72 44 88 81 50
-73 45 89 26 82
-74 46 90 27 83
-75 47 91 28 84
-76 67 124 103 60
-77 68 125 104 61
-78 101 69 105 62
-79 102 70 106 63
-80 103 71 107 64
-81 104 72 108 65
-82 66 105 73 109
-83 110 67 106 74
-84 111 68 107 75
-85 112 69 51 108
-86 113 70 52 109
-87 110 114 71 53
-88 111 115 72 54
-89 55 112 116 73
-90 56 113 117 74
-91 57 114 118 75
-92 58 115 51 119
-93 59 116 52 120
-94 121 60 117 53
-95 122 61 118 54
-96 55 123 62 119
-97 56 124 63 120
-98 121 57 125 64
-99 122 101 58 65
-100 66 123 102 59
-101 99 132 78 145
-102 100 133 79 146
-103 134 80 147 76
-104 77 135 81 148
-105 78 136 82 149
-106 79 137 83 150
-107 80 126 138 84
-108 81 127 139 85
-109 82 128 140 86
-110 83 129 141 87
-111 88 84 130 142
-112 143 89 85 131
-113 132 144 90 86
-114 133 145 91 87
-115 88 134 146 92
-116 89 135 147 93
-117 90 136 148 94
-118 91 137 149 95
-119 92 138 150 96
-120 93 126 139 97
-121 94 127 140 98
-122 99 95 128 141
-123 100 96 129 142
-124 143 97 130 76
-125 77 144 98 131
-126 158 169 107 120
-127 121 159 170 108
-128 122 160 171 109
-129 110 123 161 172
-130 111 124 162 173
-131 112 125 163 174
-132 101 113 164 175
-133 165 102 114 151
-134 166 103 115 152
-135 167 104 116 153
-136 154 168 105 117
-137 155 169 106 118
-138 156 170 107 119
-139 157 171 108 120
-140 121 158 172 109
-141 110 122 159 173
-142 111 123 160 174
-143 112 124 161 175
-144 113 125 151 162
-145 101 114 152 163
-146 102 115 153 164
-147 154 165 103 116
-148 155 166 104 117
-149 156 167 105 118
-150 157 168 106 119
-151 133 144 180 197
-152 198 134 145 181
-153 199 135 146 182
-154 200 136 147 183
-155 176 137 148 184
-156 177 138 149 185
-157 178 139 150 186
-158 187 179 126 140
-159 188 180 127 141
-160 189 181 128 142
-161 143 190 182 129
-162 144 191 183 130
-163 145 192 184 131
-164 132 146 193 185
-165 133 147 194 186
-166 187 134 148 195
-167 188 135 149 196
-168 189 136 150 197
-169 198 190 126 137
-170 199 191 127 138
-171 200 192 128 139
-172 176 193 129 140
-173 177 194 130 141
-174 178 195 131 142
-175 132 143 179 196
-176 155 213 214 172
-177 156 214 215 173
-178 157 215 216 174
-179 158 216 217 175
-180 159 151 217 218
-181 160 152 218 219
-182 220 161 153 219
-183 154 220 221 162
-184 155 221 222 163
-185 156 222 223 164
-186 165 157 223 224
-187 166 158 224 225
-188 167 201 159 225
-189 168 201 202 160
-190 169 202 203 161
-191 170 203 204 162
-192 171 204 205 163
-193 172 205 206 164
-194 165 173 206 207
-195 166 174 207 208
-196 209 167 175 208
-197 209 210 168 151
-198 210 211 169 152
-199 211 212 170 153
-200 154 212 213 171
-201 188 189 237 240
-202 189 190 238 241
-203 242 190 191 239
-204 243 191 192 240
-205 244 192 193 241
-206 242 245 193 194
-207 243 246 194 195
-208 244 247 195 196
-209 245 248 196 197
-210 198 246 249 197
-211 198 199 247 250
-212 199 200 226 248
-213 176 200 227 249
-214 176 177 228 250
-215 177 178 226 229
-216 178 179 227 230
-217 231 179 180 228
-218 232 180 181 229
-219 233 181 182 230
-220 231 234 182 183
-221 232 235 183 184
-222 233 236 184 185
-223 234 237 185 186
-224 187 235 238 186
-225 187 188 236 239
-226 212 215 18 9
-227 213 216 19 10
-228 11 214 217 20
-229 12 215 218 21
-230 22 13 216 219
-231 220 23 14 217
-232 221 24 15 218
-233 222 25 16 219
-234 220 1 223 17
-235 221 2 224 18
-236 222 3 225 19
-237 201 223 4 20
-238 202 224 5 21
-239 22 203 225 6
-240 23 201 204 7
-241 24 202 205 8
-242 25 203 206 9
-243 1 204 207 10
-244 11 2 205 208
-245 209 12 3 206
-246 210 13 4 207
-247 211 14 5 208
-248 209 212 15 6
-249 210 213 16 7
-250 211 214 17 8
0

**************