[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 250, 11 ] =
CPM(5,2,5,1).
(I) Following is a form readable by MAGMA:
g:=Graph<250|{ {6, 7}, {188, 189}, {32, 33}, {28, 30}, {236, 238}, {181, 183},
{153, 155}, {75, 79}, {160, 164}, {25, 28}, {41, 44}, {105, 108}, {171, 173},
{226, 228}, {219, 221}, {200, 206}, {35, 36}, {57, 62}, {177, 184}, {240, 249},
{83, 89}, {225, 235}, {115, 121}, {148, 159}, {3, 15}, {67, 79}, {70, 72}, {113,
127}, {146, 156}, {229, 234}, {75, 91}, {232, 248}, {10, 27}, {77, 92}, {15,
28}, {108, 127}, {132, 151}, {225, 245}, {141, 152}, {229, 240}, {202, 223},
{14, 24}, {239, 249}, {172, 186}, {160, 182}, {71, 95}, {196, 220}, {71, 94},
{11, 17}, {195, 217}, {45, 55}, {107, 113}, {109, 119}, {129, 155}, {139, 145},
{161, 186}, {196, 223}, {162, 185}, {32, 60}, {32, 61}, {163, 190}, {100, 121},
{74, 87}, {103, 122}, {46, 48}, {106, 116}, {34, 61}, {166, 185}, {75, 84}, {10,
42}, {201, 233}, {64, 97}, {1, 35}, {95, 125}, {70, 100}, {8, 44}, {29, 57},
{131, 167}, {204, 233}, {69, 99}, {154, 189}, {199, 224}, {6, 47}, {211, 250},
{29, 52}, {193, 235}, {222, 244}, {13, 38}, {3, 46}, {22, 59}, {133, 168}, {87,
120}, {94, 113}, {140, 188}, {77, 124}, {151, 166}, {199, 245}, {222, 236}, {72,
123}, {217, 234}, {213, 230}, {84, 103}, {146, 161}, {85, 97}, {218, 238}, {88,
108}, {135, 179}, {214, 227}, {216, 237}, {30, 40}, {72, 126}, {19, 43}, {29,
37}, {23, 47}, {20, 44}, {78, 119}, {200, 242}, {13, 54}, {128, 187}, {158,
165}, {94, 98}, {202, 246}, {12, 49}, {88, 101}, {138, 183}, {81, 111}, {93,
99}, {136, 182}, {24, 39}, {58, 122}, {163, 227}, {16, 81}, {174, 239}, {18,
80}, {34, 96}, {156, 223}, {158, 221}, {4, 64}, {181, 241}, {46, 106}, {17, 85},
{142, 202}, {150, 210}, {31, 90}, {1, 71}, {129, 198}, {133, 194}, {5, 77},
{186, 242}, {62, 118}, {131, 203}, {143, 199}, {148, 220}, {55, 126}, {143,
198}, {158, 215}, {6, 76}, {179, 249}, {48, 122}, {45, 102}, {18, 94}, {166,
234}, {151, 219}, {39, 106}, {9, 71}, {41, 103}, {142, 192}, {129, 206}, {16,
64}, {35, 115}, {136, 216}, {155, 203}, {157, 205}, {20, 69}, {188, 237}, {156,
205}, {38, 116}, {150, 196}, {128, 211}, {36, 113}, {144, 197}, {57, 97}, {191,
231}, {140, 212}, {41, 112}, {45, 116}, {159, 198}, {3, 89}, {51, 105}, {25,
67}, {9, 83}, {54, 109}, {62, 101}, {129, 218}, {148, 207}, {21, 73}, {136,
212}, {147, 206}, {148, 203}, {9, 104}, {178, 211}, {146, 243}, {25, 123}, {52,
87}, {187, 216}, {63, 92}, {173, 201}, {16, 118}, {15, 104}, {56, 95}, {160,
199}, {132, 236}, {60, 85}, {128, 233}, {138, 224}, {187, 209}, {165, 207},
{134, 237}, {139, 224}, {7, 107}, {53, 91}, {190, 208}, {176, 222}, {23, 120},
{56, 73}, {170, 219}, {61, 76}, {59, 74}, {144, 226}, {180, 198}, {55, 68},
{130, 241}, {144, 227}, {41, 93}, {183, 195}, {130, 246}, {171, 222}, {21, 99},
{39, 81}, {22, 96}, {12, 123}, {59, 76}, {11, 115}, {176, 200}, {14, 118}, {21,
110}, {177, 202}, {174, 213}, {38, 90}, {12, 114}, {168, 214}, {48, 78}, {154,
228}, {159, 225}, {50, 77}, {147, 236}, {2, 130}, {13, 141}, {4, 133}, {37,
164}, {6, 132}, {48, 178}, {102, 228}, {14, 141}, {66, 193}, {26, 153}, {47,
171}, {65, 197}, {51, 181}, {79, 200}, {88, 223}, {87, 208}, {104, 239}, {15,
135}, {65, 201}, {102, 238}, {95, 214}, {42, 160}, {93, 215}, {89, 211}, {86,
220}, {112, 250}, {80, 219}, {92, 209}, {107, 230}, {99, 237}, {29, 141}, {57,
169}, {1, 144}, {27, 137}, {82, 192}, {61, 175}, {54, 164}, {43, 185}, {26,
137}, {81, 194}, {56, 172}, {32, 181}, {83, 197}, {111, 249}, {124, 234}, {69,
210}, {127, 232}, {109, 245}, {8, 145}, {53, 172}, {8, 146}, {34, 184}, {20,
142}, {60, 167}, {101, 248}, {42, 180}, {44, 178}, {124, 226}, {10, 149}, {23,
136}, {105, 246}, {108, 243}, {31, 191}, {39, 135}, {34, 130}, {111, 207}, {84,
245}, {11, 169}, {4, 167}, {110, 205}, {114, 209}, {121, 218}, {117, 209}, {126,
218}, {33, 132}, {31, 185}, {62, 153}, {117, 210}, {22, 190}, {59, 147}, {36,
140}, {112, 216}, {52, 157}, {63, 150}, {2, 168}, {27, 177}, {104, 194}, {46,
133}, {5, 169}, {92, 240}, {28, 176}, {7, 170}, {58, 151}, {36, 137}, {26, 180},
{20, 187}, {60, 147}, {37, 138}, {2, 178}, {67, 243}, {55, 135}, {63, 142}, {86,
231}, {82, 227}, {50, 128}, {118, 196}, {30, 173}, {68, 247}, {27, 175}, {40,
157}, {98, 215}, {80, 229}, {53, 131}, {96, 214}, {80, 230}, {18, 165}, {25,
174}, {51, 139}, {74, 242}, {65, 248}, {22, 172}, {103, 221}, {1, 189}, {86,
235}, {90, 228}, {110, 208}, {114, 204}, {78, 241}, {125, 194}, {58, 250}, {102,
166}, {79, 143}, {70, 134}, {42, 235}, {49, 240}, {2, 192}, {68, 134}, {14,
205}, {124, 191}, {91, 159}, {107, 175}, {114, 182}, {84, 145}, {91, 158}, {5,
195}, {26, 220}, {105, 175}, {117, 179}, {33, 230}, {96, 167}, {72, 143}, {17,
217}, {98, 170}, {67, 139}, {123, 179}, {5, 204}, {24, 210}, {43, 225}, {58,
244}, {85, 155}, {126, 176}, {109, 162}, {100, 180}, {38, 247}, {88, 137}, {127,
174}, {7, 212}, {110, 186}, {47, 250}, {97, 183}, {116, 162}, {66, 149}, {63,
231}, {64, 152}, {122, 162}, {125, 165}, {45, 244}, {76, 149}, {69, 156}, {40,
242}, {112, 170}, {16, 203}, {40, 243}, {35, 248}, {19, 207}, {120, 164}, {13,
208}, {10, 212}, {98, 188}, {68, 154}, {31, 193}, {78, 145}, {9, 232}, {74,
171}, {21, 247}, {121, 154}, {49, 213}, {51, 213}, {86, 177}, {65, 169}, {100,
140}, {11, 226}, {37, 204}, {73, 163}, {82, 184}, {75, 161}, {115, 153}, {12,
224}, {82, 191}, {120, 149}, {24, 247}, {56, 215}, {119, 152}, {70, 182}, {49,
195}, {50, 192}, {106, 152}, {117, 134}, {19, 231}, {89, 173}, {73, 189}, {4,
241}, {19, 229}, {43, 221}, {30, 232}, {3, 244}, {54, 193}, {50, 197}, {33,
217}, {101, 157}, {90, 163}, {111, 150}, {66, 184}, {53, 206}, {83, 168}, {66,
190}, {93, 161}, {18, 239}, {52, 201}, {119, 138}, {8, 246}, {23, 233}, {125,
131}, {17, 238} }>;
(II) A more general form is to represent the graph as the orbit of {6, 7}
under the group generated by the following permutations:
a: (2, 108, 93)(3, 230, 53)(4, 25, 221)(5, 180, 38)(6, 59, 171)(7, 22, 173)(9,
94, 95)(10, 208, 233)(11, 121, 228)(12, 225, 152)(13, 204, 42)(14, 209, 86)(15,
80, 131)(16, 179, 19)(17, 218, 102)(18, 125, 104)(20, 202, 156)(21, 50, 137)(23,
149, 87)(24, 92, 220)(26, 247, 77)(27, 110, 128)(28, 219, 167)(29, 182, 193)(30,
170, 96)(31, 57, 70)(32, 200, 58)(33, 206, 244)(34, 40, 112)(35, 189, 144)(36,
73, 197)(37, 160, 54)(39, 240, 148)(41, 130, 243)(43, 64, 123)(44, 246, 146)(45,
217, 129)(46, 213, 91)(47, 76, 74)(48, 51, 75)(49, 159, 106)(52, 136, 66)(55,
234, 155)(56, 83, 113)(60, 176, 151)(61, 242, 250)(62, 134, 191)(63, 196,
210)(65, 140, 163)(67, 103, 241)(68, 124, 153)(69, 142, 223)(72, 185, 97)(78,
139, 84)(79, 122, 181)(81, 249, 207)(82, 101, 237)(85, 126, 166)(88, 99,
192)(89, 107, 172)(90, 169, 100)(98, 214, 232)(105, 161, 178)(109, 138,
199)(114, 235, 141)(115, 154, 226)(116, 195, 198)(117, 231, 118)(119, 224,
245)(127, 215, 168)(132, 147, 222)(133, 174, 158)(135, 229, 203)(143, 162,
183)(157, 216, 184)(165, 194, 239)(175, 186, 211)(177, 205, 187)(188, 227,
248)(190, 201, 212) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 86, 166, 169, 187, 111, 230, 138, 70, 15, 108, 84, 129, 171, 205, 215,
167, 149, 38)(3, 88, 103, 155, 47, 14, 98, 4, 10, 116, 35, 178, 220, 151, 57,
216, 81, 107, 119, 100)(5, 209, 249, 213, 224, 72, 28, 243, 75, 206, 74, 110,
56, 96, 66, 90, 144, 192, 231, 234)(6, 141, 188, 133, 27, 162, 115, 211, 196,
219, 97, 136, 39, 113, 78, 180, 244, 101, 41, 203)(7, 152, 140, 46, 137, 122,
153, 250, 118, 170, 64, 212, 106, 36, 48, 26, 58, 62, 112, 16)(8, 159, 236, 52,
99, 125, 61, 54, 154, 83, 202, 43, 17, 233, 210, 18, 181, 160, 55, 232)(9, 246,
225, 238, 201, 69, 165, 32, 164, 68)(11, 128, 150, 80, 183, 182, 135, 127, 145,
198, 222, 157, 93, 131, 76, 13, 189, 168, 177, 185)(12, 123, 25, 67, 79, 200,
242, 186, 172, 22, 190, 163, 227, 82, 191, 124, 77, 92, 240, 49)(19, 217, 204,
117, 239, 51, 199, 126, 30, 146, 91, 147, 87, 21, 95, 34, 193, 228, 197,
142)(20, 207, 33, 37, 134, 104, 105, 245, 218, 173, 156, 158, 60, 120, 247, 71,
130, 235, 102, 65)(23, 24, 94, 241, 42, 45, 248, 44, 148, 132, 29, 237, 194,
175, 109, 121, 89, 223, 221, 85)(31, 226, 50, 63, 229, 195, 114, 179, 174, 139,
143, 176, 40, 161, 53, 59, 208, 73, 214, 184)
c: (2, 31)(3, 45)(4, 13)(8, 225)(9, 154)(10, 175)(11, 65)(14, 16)(15, 55)(17,
201)(18, 237)(19, 20)(21, 125)(23, 33)(24, 81)(25, 72)(26, 88)(28, 126)(29,
97)(30, 218)(32, 120)(34, 66)(37, 183)(38, 133)(40, 129)(41, 221)(42, 105)(43,
44)(46, 116)(47, 132)(48, 162)(49, 114)(50, 124)(51, 160)(52, 85)(53, 186)(54,
241)(60, 87)(61, 149)(64, 141)(67, 143)(68, 104)(69, 207)(70, 174)(71, 189)(73,
95)(74, 147)(78, 109)(80, 216)(83, 228)(86, 202)(89, 102)(90, 168)(91, 161)(93,
158)(94, 188)(96, 190)(99, 165)(100, 127)(101, 153)(107, 212)(108, 180)(110,
131)(111, 210)(112, 219)(113, 140)(115, 248)(117, 249)(121, 232)(128, 234)(130,
193)(134, 239)(136, 230)(139, 199)(142, 231)(145, 245)(146, 159)(148, 156)(151,
250)(155, 157)(163, 214)(164, 181)(166, 211)(167, 208)(171, 236)(173, 238)(178,
185)(182, 213)(187, 229)(191, 192)(194, 247)(195, 204)(197, 226)(198, 243)(203,
205)(206, 242)(209, 240)(217, 233)(220, 223)(235, 246)
C4[ 250, 11 ]
250
-1 144 35 189 71
-2 178 168 192 130
-3 89 46 244 15
-4 133 167 64 241
-5 77 169 204 195
-6 132 47 7 76
-7 212 170 6 107
-8 44 145 146 246
-9 232 71 104 83
-10 212 27 149 42
-11 169 115 17 226
-12 123 114 224 49
-13 38 141 54 208
-14 24 205 118 141
-15 3 135 104 28
-16 81 203 118 64
-17 11 238 85 217
-18 165 80 94 239
-19 231 207 229 43
-20 44 187 69 142
-21 99 110 247 73
-22 190 59 172 96
-23 233 47 136 120
-24 210 14 247 39
-25 67 123 28 174
-26 220 180 137 153
-27 177 137 10 175
-28 176 25 15 30
-29 57 37 52 141
-30 232 28 40 173
-31 90 191 193 185
-32 33 60 181 61
-33 132 217 32 230
-34 61 96 184 130
-35 1 36 115 248
-36 35 113 137 140
-37 138 204 29 164
-38 13 90 247 116
-39 24 135 81 106
-40 242 243 157 30
-41 44 112 103 93
-42 180 235 160 10
-43 221 225 19 185
-44 178 8 41 20
-45 55 244 102 116
-46 133 3 48 106
-47 23 6 171 250
-48 78 122 46 178
-49 12 213 195 240
-50 77 192 128 197
-51 213 181 105 139
-52 157 201 29 87
-53 91 172 206 131
-54 13 193 109 164
-55 45 68 135 126
-56 215 73 95 172
-57 169 29 62 97
-58 122 244 151 250
-59 22 147 74 76
-60 167 147 85 32
-61 34 32 76 175
-62 57 101 118 153
-63 231 92 150 142
-64 4 16 97 152
-65 201 169 248 197
-66 190 149 193 184
-67 243 79 25 139
-68 55 154 134 247
-69 99 210 156 20
-70 100 134 72 182
-71 1 94 95 9
-72 143 123 70 126
-73 56 189 163 21
-74 242 59 171 87
-75 79 91 84 161
-76 59 6 61 149
-77 124 92 5 50
-78 145 48 119 241
-79 143 67 200 75
-80 18 229 219 230
-81 111 16 39 194
-82 191 192 227 184
-83 89 168 9 197
-84 145 245 103 75
-85 155 60 17 97
-86 220 231 177 235
-87 52 74 120 208
-88 101 223 137 108
-89 211 3 83 173
-90 38 228 31 163
-91 158 159 53 75
-92 77 209 63 240
-93 99 215 161 41
-94 113 71 18 98
-95 56 125 71 214
-96 22 34 167 214
-97 57 183 85 64
-98 188 170 94 215
-99 69 93 237 21
-100 121 70 180 140
-101 88 157 248 62
-102 45 166 238 228
-103 122 221 84 41
-104 15 194 239 9
-105 246 51 108 175
-106 46 39 116 152
-107 113 7 175 230
-108 88 243 105 127
-109 245 162 119 54
-110 205 21 186 208
-111 81 150 249 207
-112 170 216 41 250
-113 36 94 127 107
-114 209 12 182 204
-115 11 121 35 153
-116 45 38 106 162
-117 209 210 134 179
-118 14 16 62 196
-119 78 138 152 109
-120 23 149 87 164
-121 154 100 115 218
-122 58 48 103 162
-123 12 25 179 72
-124 77 234 191 226
-125 165 95 194 131
-126 55 176 72 218
-127 232 113 108 174
-128 187 211 233 50
-129 198 155 206 218
-130 34 2 246 241
-131 167 125 203 53
-132 33 236 6 151
-133 46 168 4 194
-134 68 70 237 117
-135 55 179 15 39
-136 23 212 182 216
-137 88 36 26 27
-138 37 224 183 119
-139 67 145 224 51
-140 100 188 36 212
-141 13 14 29 152
-142 202 192 63 20
-143 198 199 79 72
-144 1 226 227 197
-145 78 84 139 8
-146 243 156 161 8
-147 59 60 236 206
-148 220 159 203 207
-149 66 10 76 120
-150 111 210 63 196
-151 132 166 58 219
-152 106 64 119 141
-153 155 26 115 62
-154 121 68 189 228
-155 203 85 129 153
-156 69 146 223 205
-157 101 40 205 52
-158 165 221 91 215
-159 198 91 148 225
-160 199 182 42 164
-161 146 93 75 186
-162 122 116 185 109
-163 90 190 73 227
-164 37 160 54 120
-165 125 158 18 207
-166 102 234 151 185
-167 4 60 96 131
-168 133 2 214 83
-169 11 57 5 65
-170 112 7 98 219
-171 222 47 74 173
-172 22 56 53 186
-173 89 201 171 30
-174 25 213 127 239
-175 27 61 105 107
-176 200 222 126 28
-177 202 27 184 86
-178 44 2 211 48
-179 123 135 117 249
-180 198 100 26 42
-181 51 183 32 241
-182 70 114 136 160
-183 181 138 195 97
-184 66 34 177 82
-185 166 162 31 43
-186 110 242 161 172
-187 209 128 216 20
-188 189 237 140 98
-189 154 1 188 73
-190 22 66 163 208
-191 231 124 82 31
-192 2 82 50 142
-193 66 235 31 54
-194 133 81 125 104
-195 5 49 183 217
-196 220 223 150 118
-197 144 50 83 65
-198 143 180 159 129
-199 143 245 224 160
-200 176 242 79 206
-201 233 52 173 65
-202 177 223 246 142
-203 155 16 148 131
-204 233 37 114 5
-205 110 156 14 157
-206 200 147 129 53
-207 165 111 148 19
-208 110 13 190 87
-209 187 92 114 117
-210 24 69 117 150
-211 89 178 128 250
-212 136 7 140 10
-213 49 51 174 230
-214 168 95 227 96
-215 56 158 93 98
-216 187 112 136 237
-217 33 234 17 195
-218 121 126 238 129
-219 221 80 170 151
-220 26 148 86 196
-221 103 158 43 219
-222 176 244 236 171
-223 88 156 202 196
-224 12 199 138 139
-225 245 235 159 43
-226 11 144 124 228
-227 144 82 214 163
-228 154 90 102 226
-229 80 234 19 240
-230 33 80 213 107
-231 191 19 63 86
-232 127 248 30 9
-233 23 201 204 128
-234 166 124 217 229
-235 225 193 42 86
-236 132 222 147 238
-237 99 188 134 216
-238 102 236 17 218
-239 104 18 249 174
-240 92 49 249 229
-241 78 4 181 130
-242 200 40 74 186
-243 67 146 40 108
-244 45 222 3 58
-245 199 225 84 109
-246 202 105 8 130
-247 24 68 38 21
-248 232 35 101 65
-249 111 179 239 240
-250 112 211 47 58
0