C4graphGraph forms for C4 [ 250, 17 ] = SS[250,2]

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 250, 17 ] = SS[250,2].

(I) Following is a form readable by MAGMA:

g:=Graph<250|{ {238, 239}, {1, 3}, {1, 2}, {152, 155}, {1, 5}, {208, 212}, {1, 4}, {234, 239}, {24, 30}, {233, 239}, {25, 31}, {18, 26}, {23, 31}, {22, 30}, {19, 27}, {20, 29}, {21, 28}, {144, 153}, {146, 155}, {150, 156}, {145, 154}, {16, 28}, {17, 29}, {151, 153}, {147, 156}, {149, 154}, {78, 94}, {199, 215}, {197, 213}, {79, 95}, {143, 159}, {71, 86}, {231, 246}, {228, 245}, {73, 88}, {72, 89}, {140, 158}, {230, 244}, {225, 243}, {192, 210}, {68, 87}, {204, 223}, {196, 215}, {142, 157}, {14, 26}, {202, 222}, {201, 221}, {197, 209}, {194, 214}, {193, 213}, {15, 27}, {198, 211}, {227, 246}, {199, 210}, {226, 244}, {229, 243}, {76, 84}, {234, 242}, {233, 241}, {194, 218}, {193, 217}, {133, 157}, {67, 90}, {235, 242}, {224, 249}, {76, 85}, {74, 83}, {134, 159}, {135, 158}, {64, 91}, {235, 240}, {195, 216}, {73, 82}, {135, 156}, {74, 86}, {237, 241}, {236, 240}, {200, 212}, {75, 87}, {129, 157}, {65, 92}, {236, 241}, {232, 245}, {207, 210}, {72, 85}, {69, 88}, {67, 94}, {66, 95}, {132, 153}, {134, 155}, {77, 83}, {238, 240}, {205, 211}, {200, 214}, {198, 216}, {66, 93}, {237, 242}, {206, 209}, {196, 219}, {195, 220}, {77, 82}, {75, 84}, {70, 89}, {133, 154}, {18, 50}, {65, 97}, {64, 96}, {80, 112}, {128, 160}, {141, 173}, {15, 46}, {219, 250}, {215, 246}, {78, 111}, {20, 53}, {142, 175}, {143, 174}, {145, 176}, {14, 44}, {218, 248}, {214, 244}, {19, 49}, {21, 54}, {203, 232}, {80, 115}, {139, 168}, {76, 104}, {132, 160}, {149, 177}, {18, 55}, {223, 250}, {220, 249}, {210, 247}, {151, 178}, {76, 105}, {24, 61}, {21, 48}, {81, 116}, {150, 179}, {25, 63}, {222, 248}, {213, 243}, {142, 168}, {19, 52}, {20, 51}, {11, 35}, {19, 59}, {18, 58}, {12, 36}, {23, 62}, {75, 98}, {71, 110}, {10, 32}, {221, 247}, {77, 103}, {22, 60}, {13, 39}, {140, 166}, {141, 167}, {143, 165}, {68, 111}, {211, 248}, {209, 250}, {204, 231}, {203, 224}, {77, 102}, {72, 99}, {71, 108}, {70, 109}, {13, 33}, {202, 230}, {201, 229}, {152, 180}, {79, 99}, {78, 98}, {73, 101}, {21, 57}, {20, 56}, {137, 165}, {138, 166}, {11, 38}, {216, 245}, {212, 249}, {206, 227}, {141, 160}, {12, 34}, {217, 247}, {207, 225}, {74, 100}, {69, 107}, {68, 106}, {10, 37}, {205, 226}, {136, 167}, {9, 57}, {22, 38}, {131, 179}, {136, 184}, {148, 164}, {12, 61}, {80, 97}, {13, 60}, {81, 96}, {131, 178}, {8, 59}, {152, 171}, {23, 36}, {130, 177}, {151, 164}, {129, 181}, {208, 228}, {10, 63}, {80, 101}, {69, 112}, {11, 62}, {81, 100}, {148, 161}, {150, 163}, {128, 182}, {130, 180}, {148, 162}, {70, 113}, {148, 163}, {149, 162}, {147, 171}, {144, 169}, {152, 161}, {79, 117}, {145, 170}, {151, 172}, {78, 114}, {140, 176}, {149, 169}, {150, 170}, {7, 58}, {24, 37}, {16, 45}, {139, 182}, {147, 174}, {6, 56}, {79, 113}, {25, 39}, {17, 47}, {137, 183}, {146, 172}, {81, 110}, {138, 181}, {144, 175}, {146, 173}, {9, 73}, {8, 74}, {160, 227}, {42, 111}, {45, 104}, {6, 64}, {40, 110}, {7, 65}, {46, 105}, {175, 232}, {167, 224}, {10, 66}, {174, 230}, {173, 229}, {58, 114}, {11, 67}, {47, 102}, {57, 115}, {8, 67}, {170, 225}, {169, 226}, {44, 103}, {9, 66}, {7, 75}, {12, 65}, {56, 117}, {13, 64}, {6, 72}, {59, 116}, {172, 227}, {171, 228}, {38, 118}, {58, 106}, {55, 103}, {48, 97}, {61, 108}, {49, 96}, {37, 119}, {57, 107}, {45, 127}, {44, 126}, {53, 102}, {62, 109}, {35, 119}, {45, 121}, {42, 127}, {63, 106}, {56, 109}, {32, 118}, {46, 120}, {40, 126}, {59, 108}, {183, 224}, {176, 231}, {60, 107}, {33, 121}, {47, 119}, {41, 113}, {34, 120}, {44, 118}, {40, 115}, {63, 100}, {62, 101}, {43, 112}, {41, 114}, {36, 121}, {52, 105}, {54, 104}, {61, 99}, {60, 98}, {39, 120}, {43, 116}, {42, 117}, {54, 86}, {48, 82}, {186, 216}, {53, 87}, {49, 83}, {50, 84}, {51, 85}, {184, 223}, {177, 217}, {182, 222}, {181, 221}, {178, 218}, {189, 212}, {188, 214}, {50, 94}, {191, 211}, {187, 215}, {185, 213}, {52, 88}, {51, 95}, {55, 89}, {179, 220}, {190, 209}, {180, 219}, {154, 232}, {168, 223}, {161, 217}, {166, 222}, {165, 221}, {164, 220}, {162, 219}, {163, 218}, {156, 231}, {159, 228}, {153, 229}, {155, 230}, {157, 226}, {158, 225}, {92, 208}, {27, 138}, {91, 202}, {93, 204}, {26, 136}, {27, 137}, {26, 137}, {90, 201}, {93, 206}, {28, 136}, {90, 207}, {29, 139}, {91, 205}, {28, 139}, {29, 138}, {92, 203}, {30, 134}, {31, 135}, {30, 133}, {31, 132}, {92, 192}, {32, 133}, {39, 130}, {38, 131}, {35, 134}, {33, 135}, {37, 131}, {36, 130}, {34, 132}, {41, 129}, {69, 236}, {43, 128}, {108, 192}, {68, 233}, {71, 234}, {70, 235}, {46, 129}, {47, 128}, {124, 204}, {123, 202}, {122, 201}, {125, 203}, {41, 145}, {54, 142}, {42, 146}, {124, 196}, {53, 140}, {123, 194}, {55, 141}, {40, 147}, {52, 143}, {43, 144}, {122, 193}, {123, 192}, {125, 195}, {7, 199}, {123, 187}, {9, 200}, {17, 208}, {15, 206}, {111, 174}, {6, 197}, {14, 205}, {124, 191}, {125, 190}, {125, 185}, {122, 188}, {124, 186}, {122, 189}, {127, 184}, {126, 183}, {15, 196}, {14, 194}, {34, 238}, {32, 237}, {8, 198}, {35, 237}, {33, 238}, {16, 193}, {25, 200}, {23, 198}, {118, 167}, {119, 166}, {121, 168}, {17, 195}, {109, 191}, {22, 197}, {103, 180}, {107, 190}, {102, 177}, {106, 189}, {51, 235}, {99, 187}, {100, 188}, {116, 172}, {96, 185}, {115, 170}, {97, 187}, {104, 178}, {105, 179}, {49, 234}, {50, 233}, {98, 185}, {114, 169}, {48, 236}, {112, 173}, {120, 165}, {110, 176}, {113, 175}, {117, 171}, {16, 207}, {24, 199}, {101, 186}, {93, 189}, {126, 158}, {127, 159}, {87, 182}, {95, 188}, {94, 186}, {90, 191}, {91, 190}, {5, 239}, {88, 181}, {86, 184}, {89, 183}, {2, 242}, {5, 245}, {2, 243}, {83, 162}, {85, 164}, {4, 246}, {3, 240}, {82, 161}, {2, 247}, {4, 241}, {3, 244}, {84, 163}, {3, 248}, {5, 249}, {4, 250} }>;

(II) A more general form is to represent the graph as the orbit of {238, 239} under the group generated by the following permutations:

a: (2, 4)(3, 5)(6, 7)(8, 9)(10, 11)(12, 13)(14, 17)(15, 16)(18, 20)(19, 21)(22, 24)(23, 25)(26, 29)(27, 28)(32, 35)(33, 34)(36, 39)(37, 38)(40, 43)(41, 42)(44, 47)(45, 46)(48, 49)(50, 51)(52, 54)(53, 55)(56, 58)(57, 59)(60, 61)(62, 63)(64, 65)(66, 67)(68, 70)(69, 71)(72, 75)(73, 74)(78, 79)(80, 81)(82, 83)(84, 85)(86, 88)(87, 89)(90, 93)(91, 92)(94, 95)(96, 97)(98, 99)(100, 101)(102, 103)(104, 105)(106, 109)(107, 108)(110, 112)(111, 113)(114, 117)(115, 116)(118, 119)(120, 121)(122, 124)(123, 125)(126, 128)(127, 129)(132, 135)(133, 134)(136, 138)(137, 139)(140, 141)(142, 143)(144, 147)(145, 146)(149, 152)(150, 151)(153, 156)(154, 155)(157, 159)(158, 160)(161, 162)(163, 164)(165, 168)(166, 167)(169, 171)(170, 172)(173, 176)(174, 175)(177, 180)(178, 179)(181, 184)(182, 183)(185, 187)(186, 188)(189, 191)(190, 192)(193, 196)(194, 195)(197, 199)(198, 200)(201, 204)(202, 203)(205, 208)(206, 207)(209, 210)(211, 212)(213, 215)(214, 216)(217, 219)(218, 220)(221, 223)(222, 224)(225, 227)(226, 228)(229, 231)(230, 232)(233, 235)(234, 236)(239, 240)(241, 242)(243, 246)(244, 245)(247, 250)(248, 249)
b: (2, 5, 4, 3)(6, 8, 7, 9)(10, 13, 11, 12)(14, 16, 17, 15)(18, 21, 20, 19)(22, 23, 24, 25)(26, 28, 29, 27)(30, 31)(32, 33, 35, 34)(36, 37, 39, 38)(40, 42, 43, 41)(44, 45, 47, 46)(48, 51, 49, 50)(52, 55, 54, 53)(56, 59, 58, 57)(60, 62, 61, 63)(64, 67, 65, 66)(68, 69, 70, 71)(72, 74, 75, 73)(76, 77)(78, 80, 79, 81)(82, 85, 83, 84)(86, 87, 88, 89)(90, 92, 93, 91)(94, 97, 95, 96)(98, 101, 99, 100)(102, 105, 103, 104)(106, 107, 109, 108)(110, 111, 112, 113)(114, 115, 117, 116)(118, 121, 119, 120)(122, 125, 124, 123)(126, 127, 128, 129)(130, 131)(132, 133, 135, 134)(136, 139, 138, 137)(140, 143, 141, 142)(144, 145, 147, 146)(149, 150, 152, 151)(153, 154, 156, 155)(157, 158, 159, 160)(161, 164, 162, 163)(165, 167, 168, 166)(169, 170, 171, 172)(173, 175, 176, 174)(177, 179, 180, 178)(181, 183, 184, 182)(185, 186, 187, 188)(189, 190, 191, 192)(193, 195, 196, 194)(197, 198, 199, 200)(201, 203, 204, 202)(205, 207, 208, 206)(209, 211, 210, 212)(213, 216, 215, 214)(217, 220, 219, 218)(221, 224, 223, 222)(225, 228, 227, 226)(229, 232, 231, 230)(233, 236, 235, 234)(237, 238)(239, 241, 240, 242)(243, 245, 246, 244)(247, 249, 250, 248)
c: (1, 26, 60, 47)(2, 137, 13, 102)(3, 18, 22, 17)(4, 136, 107, 128)(5, 14, 98, 119)(6, 20, 235, 89)(7, 134, 212, 226)(8, 150)(9, 144, 215, 127)(10, 232, 123, 111)(11, 220, 211, 84)(12, 152, 122, 129)(15, 121, 82, 229)(16, 88, 132, 219)(19, 135, 83, 225)(21, 112, 227, 223)(23, 148, 90, 105)(24, 228, 214, 114)(25, 149, 210, 143)(27, 33, 77, 243)(28, 69, 160, 250)(29, 240, 55, 197)(30, 208, 244, 58)(31, 162, 207, 52)(32, 203, 202, 68)(34, 180, 193, 181)(35, 249, 205, 75)(36, 161, 201, 46)(37, 245, 194, 78)(38, 195, 248, 50)(39, 177, 247, 165)(40, 81, 176, 71)(41, 61, 171, 188)(42, 66, 175, 187)(43, 246, 184, 57)(44, 185, 166, 239)(45, 73, 153, 196)(48, 173, 206, 168)(49, 158)(51, 70, 72, 56)(53, 242, 183, 64)(54, 80, 172, 204)(59, 156, 74, 170)(62, 164, 191, 76)(63, 154, 192, 174)(65, 155, 189, 157)(67, 179, 198, 163)(85, 109)(86, 115, 116, 231)(87, 237, 224, 91)(92, 230, 106, 133)(93, 142, 97, 146)(94, 131, 216, 218)(95, 113, 99, 117)(96, 140, 234, 126)(100, 145, 108, 147)(101, 151, 124, 104)(103, 213, 138, 238)(118, 125, 222, 233)(120, 130, 217, 221)(139, 236, 141, 209)(159, 200, 169, 199)(167, 190, 182, 241)(178, 186)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 250, 17 ]
250
-1 2 3 4 5
-2 242 1 243 247
-3 1 244 248 240
-4 1 246 250 241
-5 1 245 249 239
-6 56 72 64 197
-7 199 58 75 65
-8 198 67 59 74
-9 66 57 200 73
-10 66 37 63 32
-11 67 35 38 62
-12 34 36 61 65
-13 33 60 39 64
-14 44 26 194 205
-15 46 27 206 196
-16 45 28 193 207
-17 47 29 195 208
-18 55 58 26 50
-19 59 27 49 52
-20 56 29 51 53
-21 57 48 28 54
-22 38 60 30 197
-23 198 36 62 31
-24 199 37 61 30
-25 200 39 63 31
-26 14 136 137 18
-27 15 137 138 19
-28 136 16 139 21
-29 17 138 139 20
-30 22 133 24 134
-31 132 23 25 135
-32 133 237 118 10
-33 121 13 135 238
-34 132 12 238 120
-35 11 134 237 119
-36 121 12 23 130
-37 24 119 10 131
-38 11 22 118 131
-39 13 25 130 120
-40 110 147 115 126
-41 145 113 114 129
-42 111 146 127 117
-43 144 112 116 128
-44 14 103 126 118
-45 121 16 104 127
-46 15 105 129 120
-47 102 17 128 119
-48 82 236 97 21
-49 234 83 19 96
-50 233 94 18 84
-51 235 95 85 20
-52 88 143 105 19
-53 102 140 20 87
-54 104 86 21 142
-55 89 103 18 141
-56 6 117 20 109
-57 115 107 9 21
-58 114 7 18 106
-59 116 8 19 108
-60 22 13 107 98
-61 99 12 24 108
-62 11 23 101 109
-63 100 25 106 10
-64 13 91 6 96
-65 12 92 7 97
-66 93 95 9 10
-67 11 90 94 8
-68 111 233 106 87
-69 88 112 236 107
-70 89 113 235 109
-71 110 234 86 108
-72 99 89 6 85
-73 88 101 82 9
-74 100 83 8 86
-75 7 84 87 98
-76 104 105 84 85
-77 102 103 82 83
-78 111 114 94 98
-79 99 113 95 117
-80 101 112 115 97
-81 110 100 116 96
-82 77 48 73 161
-83 77 49 74 162
-84 50 75 163 76
-85 72 51 76 164
-86 71 74 184 54
-87 68 182 53 75
-88 69 181 73 52
-89 55 70 72 183
-90 67 201 191 207
-91 190 202 205 64
-92 192 203 65 208
-93 66 189 204 206
-94 67 78 50 186
-95 66 188 79 51
-96 81 49 64 185
-97 187 80 48 65
-98 78 60 75 185
-99 187 79 61 72
-100 188 81 63 74
-101 80 62 73 186
-102 77 177 47 53
-103 44 55 77 180
-104 45 178 54 76
-105 46 179 52 76
-106 68 189 58 63
-107 57 69 190 60
-108 59 71 192 61
-109 56 70 191 62
-110 176 81 71 40
-111 78 68 42 174
-112 69 80 173 43
-113 79 70 41 175
-114 78 58 169 41
-115 57 80 170 40
-116 59 81 172 43
-117 56 79 171 42
-118 44 167 38 32
-119 166 35 47 37
-120 165 34 46 39
-121 33 45 36 168
-122 188 189 201 193
-123 187 202 192 194
-124 191 204 196 186
-125 190 203 195 185
-126 44 158 40 183
-127 45 159 184 42
-128 47 160 182 43
-129 46 157 181 41
-130 177 36 180 39
-131 178 179 37 38
-132 34 160 31 153
-133 154 157 30 32
-134 155 35 159 30
-135 33 156 158 31
-136 167 26 28 184
-137 165 26 27 183
-138 166 27 181 29
-139 168 28 182 29
-140 176 166 158 53
-141 55 167 160 173
-142 157 168 54 175
-143 165 159 52 174
-144 169 43 153 175
-145 154 176 170 41
-146 155 172 173 42
-147 156 171 40 174
-148 161 162 163 164
-149 154 177 169 162
-150 156 179 170 163
-151 178 172 153 164
-152 155 180 171 161
-153 132 144 151 229
-154 133 232 145 149
-155 134 146 152 230
-156 231 135 147 150
-157 133 226 129 142
-158 135 126 225 140
-159 143 134 127 228
-160 132 128 227 141
-161 82 148 217 152
-162 148 83 149 219
-163 148 84 150 218
-164 220 148 85 151
-165 143 221 137 120
-166 222 138 140 119
-167 136 224 118 141
-168 121 223 139 142
-169 144 114 149 226
-170 145 115 225 150
-171 147 117 228 152
-172 146 116 227 151
-173 112 146 141 229
-174 143 111 147 230
-175 144 232 113 142
-176 110 231 145 140
-177 102 149 217 130
-178 104 151 218 131
-179 220 105 150 131
-180 103 130 152 219
-181 88 221 138 129
-182 222 128 139 87
-183 89 224 126 137
-184 223 136 127 86
-185 125 213 96 98
-186 101 124 94 216
-187 99 123 215 97
-188 100 122 214 95
-189 122 212 93 106
-190 209 91 125 107
-191 90 211 124 109
-192 210 123 92 108
-193 122 213 16 217
-194 123 14 214 218
-195 220 125 17 216
-196 124 15 215 219
-197 22 209 213 6
-198 23 211 216 8
-199 210 24 215 7
-200 25 212 214 9
-201 122 221 90 229
-202 123 222 91 230
-203 232 92 125 224
-204 231 124 223 93
-205 211 14 91 226
-206 209 15 93 227
-207 210 90 16 225
-208 212 92 17 228
-209 190 206 250 197
-210 199 192 247 207
-211 198 191 248 205
-212 189 200 249 208
-213 243 193 185 197
-214 188 200 244 194
-215 187 199 246 196
-216 198 245 195 186
-217 177 247 193 161
-218 178 248 194 163
-219 180 162 250 196
-220 179 249 195 164
-221 165 201 181 247
-222 166 202 182 248
-223 168 204 184 250
-224 167 203 183 249
-225 243 158 170 207
-226 244 157 169 205
-227 246 160 172 206
-228 245 159 171 208
-229 243 201 173 153
-230 155 244 202 174
-231 176 156 246 204
-232 154 245 203 175
-233 68 50 239 241
-234 242 49 71 239
-235 242 70 51 240
-236 69 48 240 241
-237 242 35 32 241
-238 33 34 239 240
-239 233 234 5 238
-240 3 235 236 238
-241 233 4 236 237
-242 2 234 235 237
-243 2 213 225 229
-244 3 214 226 230
-245 232 5 216 228
-246 231 4 215 227
-247 210 221 2 217
-248 211 222 3 218
-249 220 212 224 5
-250 209 223 4 219
0

**************