C4graphGraph forms for C4 [ 252, 2 ] = C_252(1,55)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 252, 2 ] = C_252(1,55).

(I) Following is a form readable by MAGMA:

g:=Graph<252|{ {2, 3}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {1, 2}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {3, 4}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {7, 8}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {103, 104}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {8, 63}, {72, 127}, {64, 119}, {128, 183}, {136, 191}, {192, 247}, {1, 56}, {197, 252}, {195, 250}, {71, 126}, {69, 124}, {67, 122}, {65, 120}, {3, 58}, {5, 60}, {7, 62}, {129, 184}, {131, 186}, {133, 188}, {135, 190}, {193, 248}, {2, 57}, {194, 249}, {70, 125}, {66, 121}, {6, 61}, {130, 185}, {134, 189}, {4, 59}, {223, 224}, {196, 251}, {95, 96}, {68, 123}, {31, 32}, {132, 187}, {159, 160}, {9, 64}, {63, 118}, {61, 116}, {59, 114}, {57, 112}, {11, 66}, {13, 68}, {15, 70}, {25, 80}, {27, 82}, {29, 84}, {31, 86}, {41, 96}, {43, 98}, {45, 100}, {47, 102}, {137, 192}, {139, 194}, {141, 196}, {143, 198}, {153, 208}, {155, 210}, {157, 212}, {159, 214}, {169, 224}, {171, 226}, {173, 228}, {175, 230}, {185, 240}, {187, 242}, {189, 244}, {191, 246}, {10, 65}, {62, 117}, {58, 113}, {14, 69}, {26, 81}, {30, 85}, {42, 97}, {46, 101}, {138, 193}, {142, 197}, {154, 209}, {158, 213}, {170, 225}, {174, 229}, {186, 241}, {190, 245}, {12, 67}, {60, 115}, {28, 83}, {44, 99}, {140, 195}, {156, 211}, {172, 227}, {188, 243}, {16, 71}, {56, 111}, {24, 79}, {48, 103}, {144, 199}, {152, 207}, {176, 231}, {184, 239}, {17, 72}, {55, 110}, {19, 74}, {21, 76}, {23, 78}, {49, 104}, {51, 106}, {53, 108}, {145, 200}, {147, 202}, {149, 204}, {151, 206}, {177, 232}, {179, 234}, {181, 236}, {183, 238}, {18, 73}, {54, 109}, {22, 77}, {50, 105}, {146, 201}, {150, 205}, {178, 233}, {182, 237}, {20, 75}, {52, 107}, {148, 203}, {180, 235}, {32, 87}, {40, 95}, {160, 215}, {168, 223}, {33, 88}, {35, 90}, {37, 92}, {39, 94}, {161, 216}, {163, 218}, {165, 220}, {167, 222}, {34, 89}, {38, 93}, {162, 217}, {166, 221}, {36, 91}, {63, 64}, {164, 219}, {191, 192}, {2, 199}, {8, 205}, {10, 207}, {16, 213}, {18, 215}, {24, 221}, {26, 223}, {32, 229}, {34, 231}, {40, 237}, {42, 239}, {48, 245}, {50, 247}, {1, 198}, {9, 206}, {17, 214}, {25, 222}, {33, 230}, {41, 238}, {49, 246}, {73, 128}, {105, 160}, {95, 150}, {93, 148}, {91, 146}, {89, 144}, {79, 134}, {77, 132}, {75, 130}, {107, 162}, {109, 164}, {111, 166}, {121, 176}, {123, 178}, {125, 180}, {127, 182}, {3, 200}, {94, 149}, {90, 145}, {78, 133}, {74, 129}, {55, 252}, {7, 204}, {19, 216}, {23, 220}, {35, 232}, {39, 236}, {51, 248}, {106, 161}, {110, 165}, {122, 177}, {126, 181}, {4, 201}, {54, 251}, {6, 203}, {20, 217}, {22, 219}, {36, 233}, {38, 235}, {52, 249}, {5, 202}, {92, 147}, {76, 131}, {21, 218}, {37, 234}, {53, 250}, {108, 163}, {124, 179}, {80, 135}, {88, 143}, {112, 167}, {120, 175}, {81, 136}, {87, 142}, {85, 140}, {83, 138}, {113, 168}, {115, 170}, {117, 172}, {119, 174}, {11, 208}, {86, 141}, {82, 137}, {15, 212}, {43, 240}, {47, 244}, {114, 169}, {118, 173}, {12, 209}, {14, 211}, {44, 241}, {46, 243}, {13, 210}, {84, 139}, {45, 242}, {116, 171}, {96, 151}, {104, 159}, {97, 152}, {103, 158}, {101, 156}, {99, 154}, {27, 224}, {102, 157}, {98, 153}, {31, 228}, {1, 252}, {28, 225}, {30, 227}, {29, 226}, {100, 155}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252)
b: (2, 198)(3, 143)(4, 88)(5, 33)(6, 230)(7, 175)(8, 120)(9, 65)(11, 207)(12, 152)(13, 97)(14, 42)(15, 239)(16, 184)(17, 129)(18, 74)(20, 216)(21, 161)(22, 106)(23, 51)(24, 248)(25, 193)(26, 138)(27, 83)(29, 225)(30, 170)(31, 115)(32, 60)(34, 202)(35, 147)(36, 92)(38, 234)(39, 179)(40, 124)(41, 69)(43, 211)(44, 156)(45, 101)(47, 243)(48, 188)(49, 133)(50, 78)(52, 220)(53, 165)(54, 110)(56, 252)(57, 197)(58, 142)(59, 87)(61, 229)(62, 174)(63, 119)(66, 206)(67, 151)(68, 96)(70, 238)(71, 183)(72, 128)(75, 215)(76, 160)(77, 105)(79, 247)(80, 192)(81, 137)(84, 224)(85, 169)(86, 114)(89, 201)(90, 146)(93, 233)(94, 178)(95, 123)(98, 210)(99, 155)(102, 242)(103, 187)(104, 132)(107, 219)(108, 164)(111, 251)(112, 196)(113, 141)(116, 228)(117, 173)(121, 205)(122, 150)(125, 237)(126, 182)(130, 214)(131, 159)(134, 246)(135, 191)(139, 223)(140, 168)(144, 200)(148, 232)(149, 177)(153, 209)(157, 241)(158, 186)(162, 218)(166, 250)(167, 195)(171, 227)(176, 204)(180, 236)(185, 213)(189, 245)(194, 222)(203, 231)(212, 240)(221, 249)
c: (2, 56)(3, 111)(4, 166)(5, 221)(6, 24)(7, 79)(8, 134)(9, 189)(10, 244)(11, 47)(12, 102)(13, 157)(14, 212)(16, 70)(17, 125)(18, 180)(19, 235)(20, 38)(21, 93)(22, 148)(23, 203)(25, 61)(26, 116)(27, 171)(28, 226)(30, 84)(31, 139)(32, 194)(33, 249)(34, 52)(35, 107)(36, 162)(37, 217)(39, 75)(40, 130)(41, 185)(42, 240)(44, 98)(45, 153)(46, 208)(48, 66)(49, 121)(50, 176)(51, 231)(53, 89)(54, 144)(55, 199)(58, 112)(59, 167)(60, 222)(62, 80)(63, 135)(64, 190)(65, 245)(67, 103)(68, 158)(69, 213)(72, 126)(73, 181)(74, 236)(76, 94)(77, 149)(78, 204)(81, 117)(82, 172)(83, 227)(86, 140)(87, 195)(88, 250)(90, 108)(91, 163)(92, 218)(95, 131)(96, 186)(97, 241)(100, 154)(101, 209)(104, 122)(105, 177)(106, 232)(109, 145)(110, 200)(114, 168)(115, 223)(118, 136)(119, 191)(120, 246)(123, 159)(124, 214)(128, 182)(129, 237)(132, 150)(133, 205)(137, 173)(138, 228)(142, 196)(143, 251)(146, 164)(147, 219)(151, 187)(152, 242)(156, 210)(160, 178)(161, 233)(165, 201)(170, 224)(174, 192)(175, 247)(179, 215)(184, 238)(188, 206)(193, 229)(198, 252)(202, 220)(207, 243)(216, 234)(230, 248)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 252, 2 ]
252
-1 198 56 2 252
-2 1 199 57 3
-3 2 200 58 4
-4 3 201 59 5
-5 4 202 60 6
-6 5 203 61 7
-7 6 204 62 8
-8 7 205 63 9
-9 8 206 64 10
-10 11 9 207 65
-11 66 12 10 208
-12 11 209 67 13
-13 12 210 68 14
-14 13 211 69 15
-15 14 212 70 16
-16 15 213 71 17
-17 16 214 72 18
-18 17 215 73 19
-19 18 216 74 20
-20 19 217 75 21
-21 22 20 218 76
-22 77 23 21 219
-23 22 220 78 24
-24 23 221 79 25
-25 24 222 80 26
-26 25 223 81 27
-27 26 224 82 28
-28 27 225 83 29
-29 28 226 84 30
-30 29 227 85 31
-31 30 228 86 32
-32 33 31 229 87
-33 88 34 32 230
-34 33 231 89 35
-35 34 232 90 36
-36 35 233 91 37
-37 36 234 92 38
-38 37 235 93 39
-39 38 236 94 40
-40 39 237 95 41
-41 40 238 96 42
-42 41 239 97 43
-43 44 42 240 98
-44 99 45 43 241
-45 44 242 100 46
-46 45 243 101 47
-47 46 244 102 48
-48 47 245 103 49
-49 48 246 104 50
-50 49 247 105 51
-51 50 248 106 52
-52 51 249 107 53
-53 52 250 108 54
-54 55 53 251 109
-55 110 56 54 252
-56 55 1 111 57
-57 56 2 112 58
-58 57 3 113 59
-59 58 4 114 60
-60 59 5 115 61
-61 60 6 116 62
-62 61 7 117 63
-63 62 8 118 64
-64 63 9 119 65
-65 66 64 10 120
-66 11 121 67 65
-67 66 12 122 68
-68 67 13 123 69
-69 68 14 124 70
-70 69 15 125 71
-71 70 16 126 72
-72 71 17 127 73
-73 72 18 128 74
-74 73 19 129 75
-75 74 20 130 76
-76 77 75 21 131
-77 22 132 78 76
-78 77 23 133 79
-79 78 24 134 80
-80 79 25 135 81
-81 80 26 136 82
-82 81 27 137 83
-83 82 28 138 84
-84 83 29 139 85
-85 84 30 140 86
-86 85 31 141 87
-87 88 86 32 142
-88 33 143 89 87
-89 88 34 144 90
-90 89 35 145 91
-91 90 36 146 92
-92 91 37 147 93
-93 92 38 148 94
-94 93 39 149 95
-95 94 40 150 96
-96 95 41 151 97
-97 96 42 152 98
-98 99 97 43 153
-99 44 154 100 98
-100 99 45 155 101
-101 100 46 156 102
-102 101 47 157 103
-103 102 48 158 104
-104 103 49 159 105
-105 104 50 160 106
-106 105 51 161 107
-107 106 52 162 108
-108 107 53 163 109
-109 110 108 54 164
-110 55 165 111 109
-111 110 56 166 112
-112 111 57 167 113
-113 112 58 168 114
-114 113 59 169 115
-115 114 60 170 116
-116 115 61 171 117
-117 116 62 172 118
-118 117 63 173 119
-119 118 64 174 120
-120 121 119 65 175
-121 66 176 122 120
-122 121 67 177 123
-123 122 68 178 124
-124 123 69 179 125
-125 124 70 180 126
-126 125 71 181 127
-127 126 72 182 128
-128 127 73 183 129
-129 128 74 184 130
-130 129 75 185 131
-131 132 130 76 186
-132 77 187 133 131
-133 132 78 188 134
-134 133 79 189 135
-135 134 80 190 136
-136 135 81 191 137
-137 136 82 192 138
-138 137 83 193 139
-139 138 84 194 140
-140 139 85 195 141
-141 140 86 196 142
-142 143 141 87 197
-143 88 198 144 142
-144 143 89 199 145
-145 144 90 200 146
-146 145 91 201 147
-147 146 92 202 148
-148 147 93 203 149
-149 148 94 204 150
-150 149 95 205 151
-151 150 96 206 152
-152 151 97 207 153
-153 154 152 98 208
-154 99 209 155 153
-155 154 100 210 156
-156 155 101 211 157
-157 156 102 212 158
-158 157 103 213 159
-159 158 104 214 160
-160 159 105 215 161
-161 160 106 216 162
-162 161 107 217 163
-163 162 108 218 164
-164 165 163 109 219
-165 110 220 166 164
-166 165 111 221 167
-167 166 112 222 168
-168 167 113 223 169
-169 168 114 224 170
-170 169 115 225 171
-171 170 116 226 172
-172 171 117 227 173
-173 172 118 228 174
-174 173 119 229 175
-175 176 174 120 230
-176 121 231 177 175
-177 176 122 232 178
-178 177 123 233 179
-179 178 124 234 180
-180 179 125 235 181
-181 180 126 236 182
-182 181 127 237 183
-183 182 128 238 184
-184 183 129 239 185
-185 184 130 240 186
-186 187 185 131 241
-187 132 242 188 186
-188 187 133 243 189
-189 188 134 244 190
-190 189 135 245 191
-191 190 136 246 192
-192 191 137 247 193
-193 192 138 248 194
-194 193 139 249 195
-195 194 140 250 196
-196 195 141 251 197
-197 198 196 142 252
-198 143 1 199 197
-199 198 144 2 200
-200 199 145 3 201
-201 200 146 4 202
-202 201 147 5 203
-203 202 148 6 204
-204 203 149 7 205
-205 204 150 8 206
-206 205 151 9 207
-207 206 152 10 208
-208 11 209 207 153
-209 154 12 210 208
-210 209 155 13 211
-211 210 156 14 212
-212 211 157 15 213
-213 212 158 16 214
-214 213 159 17 215
-215 214 160 18 216
-216 215 161 19 217
-217 216 162 20 218
-218 217 163 21 219
-219 22 220 218 164
-220 165 23 221 219
-221 220 166 24 222
-222 221 167 25 223
-223 222 168 26 224
-224 223 169 27 225
-225 224 170 28 226
-226 225 171 29 227
-227 226 172 30 228
-228 227 173 31 229
-229 228 174 32 230
-230 33 231 229 175
-231 176 34 232 230
-232 231 177 35 233
-233 232 178 36 234
-234 233 179 37 235
-235 234 180 38 236
-236 235 181 39 237
-237 236 182 40 238
-238 237 183 41 239
-239 238 184 42 240
-240 239 185 43 241
-241 44 242 240 186
-242 187 45 243 241
-243 242 188 46 244
-244 243 189 47 245
-245 244 190 48 246
-246 245 191 49 247
-247 246 192 50 248
-248 247 193 51 249
-249 248 194 52 250
-250 249 195 53 251
-251 250 196 54 252
-252 55 1 251 197
0

**************