[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 252, 3 ] =
C_252(1,71).
(I) Following is a form readable by MAGMA:
g:=Graph<252|{ {2, 3}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242,
243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231},
{228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216,
217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205},
{202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {98, 99}, {96, 97},
{94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81},
{78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65},
{62, 63}, {60, 61}, {58, 59}, {56, 57}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12,
13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28,
29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44,
45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {100, 101}, {102, 103},
{104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116,
117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129},
{130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142,
143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155},
{156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168,
169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181},
{182, 183}, {184, 185}, {186, 187}, {188, 189}, {190, 191}, {192, 193}, {1, 2},
{249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225,
226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202},
{197, 198}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73,
74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17,
18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49,
50}, {53, 54}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121,
122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146},
{149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173,
174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {3, 4}, {251,
252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204},
{195, 196}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11,
12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {107, 108}, {115, 116},
{123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171,
172}, {179, 180}, {187, 188}, {7, 8}, {247, 248}, {231, 232}, {215, 216}, {199,
200}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {103, 104}, {119, 120},
{135, 136}, {151, 152}, {167, 168}, {183, 184}, {15, 16}, {239, 240}, {207,
208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {223,
224}, {95, 96}, {159, 160}, {8, 79}, {56, 127}, {16, 87}, {24, 95}, {32, 103},
{40, 111}, {48, 119}, {128, 199}, {136, 207}, {144, 215}, {152, 223}, {160,
231}, {168, 239}, {176, 247}, {1, 72}, {55, 126}, {3, 74}, {5, 76}, {7, 78},
{17, 88}, {19, 90}, {21, 92}, {23, 94}, {33, 104}, {35, 106}, {37, 108}, {39,
110}, {49, 120}, {51, 122}, {53, 124}, {129, 200}, {131, 202}, {133, 204}, {135,
206}, {145, 216}, {147, 218}, {149, 220}, {151, 222}, {161, 232}, {163, 234},
{165, 236}, {167, 238}, {177, 248}, {179, 250}, {181, 252}, {2, 73}, {6, 77},
{18, 89}, {22, 93}, {34, 105}, {38, 109}, {50, 121}, {54, 125}, {130, 201},
{134, 205}, {146, 217}, {150, 221}, {162, 233}, {166, 237}, {178, 249}, {4, 75},
{20, 91}, {36, 107}, {52, 123}, {132, 203}, {148, 219}, {164, 235}, {180, 251},
{9, 80}, {11, 82}, {13, 84}, {15, 86}, {41, 112}, {43, 114}, {45, 116}, {47,
118}, {137, 208}, {139, 210}, {141, 212}, {143, 214}, {169, 240}, {171, 242},
{173, 244}, {175, 246}, {10, 81}, {14, 85}, {42, 113}, {46, 117}, {138, 209},
{142, 213}, {170, 241}, {174, 245}, {12, 83}, {44, 115}, {140, 211}, {172, 243},
{25, 96}, {27, 98}, {29, 100}, {31, 102}, {153, 224}, {155, 226}, {157, 228},
{159, 230}, {26, 97}, {30, 101}, {154, 225}, {158, 229}, {28, 99}, {63, 64},
{156, 227}, {191, 192}, {2, 183}, {66, 247}, {64, 245}, {8, 189}, {10, 191}, {1,
182}, {65, 246}, {9, 190}, {57, 128}, {63, 134}, {61, 132}, {59, 130}, {121,
192}, {123, 194}, {125, 196}, {127, 198}, {3, 184}, {71, 252}, {67, 248}, {62,
133}, {58, 129}, {7, 188}, {122, 193}, {126, 197}, {4, 185}, {70, 251}, {68,
249}, {6, 187}, {5, 186}, {69, 250}, {60, 131}, {124, 195}, {64, 135}, {96,
167}, {88, 159}, {80, 151}, {72, 143}, {104, 175}, {112, 183}, {120, 191}, {65,
136}, {97, 168}, {87, 158}, {85, 156}, {83, 154}, {81, 152}, {71, 142}, {69,
140}, {67, 138}, {99, 170}, {101, 172}, {103, 174}, {113, 184}, {115, 186},
{117, 188}, {119, 190}, {11, 192}, {98, 169}, {86, 157}, {82, 153}, {70, 141},
{66, 137}, {63, 244}, {59, 240}, {15, 196}, {27, 208}, {31, 212}, {43, 224},
{47, 228}, {102, 173}, {114, 185}, {118, 189}, {12, 193}, {62, 243}, {60, 241},
{14, 195}, {28, 209}, {30, 211}, {44, 225}, {46, 227}, {13, 194}, {84, 155},
{68, 139}, {61, 242}, {29, 210}, {45, 226}, {100, 171}, {116, 187}, {16, 197},
{58, 239}, {56, 237}, {18, 199}, {24, 205}, {26, 207}, {48, 229}, {50, 231},
{17, 198}, {57, 238}, {25, 206}, {49, 230}, {73, 144}, {79, 150}, {77, 148},
{75, 146}, {105, 176}, {107, 178}, {109, 180}, {111, 182}, {19, 200}, {78, 149},
{74, 145}, {55, 236}, {23, 204}, {51, 232}, {106, 177}, {110, 181}, {20, 201},
{22, 203}, {52, 233}, {54, 235}, {21, 202}, {76, 147}, {53, 234}, {108, 179},
{32, 213}, {34, 215}, {40, 221}, {42, 223}, {33, 214}, {41, 222}, {89, 160},
{95, 166}, {93, 164}, {91, 162}, {35, 216}, {94, 165}, {90, 161}, {39, 220}, {1,
252}, {36, 217}, {38, 219}, {37, 218}, {92, 163}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 72)(3, 143)(4, 214)(5, 33)(6, 104)(7, 175)(8, 246)(9, 65)(10, 136)(11,
207)(12, 26)(13, 97)(14, 168)(15, 239)(16, 58)(17, 129)(18, 200)(20, 90)(21,
161)(22, 232)(23, 51)(24, 122)(25, 193)(27, 83)(28, 154)(29, 225)(30, 44)(31,
115)(32, 186)(34, 76)(35, 147)(36, 218)(38, 108)(39, 179)(40, 250)(41, 69)(42,
140)(43, 211)(45, 101)(46, 172)(47, 243)(48, 62)(49, 133)(50, 204)(52, 94)(53,
165)(54, 236)(56, 126)(57, 197)(59, 87)(60, 158)(61, 229)(63, 119)(64, 190)(66,
80)(67, 151)(68, 222)(70, 112)(71, 183)(74, 144)(75, 215)(77, 105)(78, 176)(79,
247)(81, 137)(82, 208)(84, 98)(85, 169)(86, 240)(88, 130)(89, 201)(92, 162)(93,
233)(95, 123)(96, 194)(99, 155)(100, 226)(102, 116)(103, 187)(106, 148)(107,
219)(110, 180)(111, 251)(113, 141)(114, 212)(117, 173)(118, 244)(120, 134)(121,
205)(124, 166)(125, 237)(128, 198)(131, 159)(132, 230)(135, 191)(138, 152)(139,
223)(142, 184)(146, 216)(149, 177)(150, 248)(153, 209)(156, 170)(157, 241)(160,
202)(164, 234)(167, 195)(171, 227)(174, 188)(178, 220)(182, 252)(185, 213)(189,
245)(192, 206)(196, 238)(203, 231)(210, 224)(221, 249)(228, 242) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252)
c: (2, 182)(3, 111)(4, 40)(5, 221)(6, 150)(7, 79)(9, 189)(10, 118)(11, 47)(12,
228)(13, 157)(14, 86)(16, 196)(17, 125)(18, 54)(19, 235)(20, 164)(21, 93)(23,
203)(24, 132)(25, 61)(26, 242)(27, 171)(28, 100)(30, 210)(31, 139)(32, 68)(33,
249)(34, 178)(35, 107)(37, 217)(38, 146)(39, 75)(41, 185)(42, 114)(44, 224)(45,
153)(46, 82)(48, 192)(49, 121)(51, 231)(52, 160)(53, 89)(55, 199)(56, 128)(58,
238)(59, 167)(60, 96)(62, 206)(63, 135)(65, 245)(66, 174)(67, 103)(69, 213)(70,
142)(72, 252)(73, 181)(74, 110)(76, 220)(77, 149)(80, 188)(81, 117)(83, 227)(84,
156)(87, 195)(88, 124)(90, 234)(91, 163)(94, 202)(95, 131)(97, 241)(98,
170)(101, 209)(102, 138)(104, 248)(105, 177)(108, 216)(109, 145)(112, 184)(115,
223)(116, 152)(119, 191)(122, 230)(123, 159)(126, 198)(129, 237)(130, 166)(133,
205)(136, 244)(137, 173)(140, 212)(143, 251)(144, 180)(147, 219)(151, 187)(154,
226)(158, 194)(161, 233)(165, 201)(168, 240)(172, 208)(175, 247)(179, 215)(186,
222)(193, 229)(200, 236)(207, 243)(214, 250)
C4[ 252, 3 ]
252
-1 2 72 182 252
-2 1 3 73 183
-3 2 4 74 184
-4 3 5 75 185
-5 4 6 76 186
-6 77 187 5 7
-7 78 188 6 8
-8 79 189 7 9
-9 80 190 8 10
-10 11 81 191 9
-11 12 82 192 10
-12 11 13 83 193
-13 12 14 84 194
-14 13 15 85 195
-15 14 16 86 196
-16 15 17 87 197
-17 88 198 16 18
-18 89 199 17 19
-19 90 200 18 20
-20 91 201 19 21
-21 22 92 202 20
-22 23 93 203 21
-23 22 24 94 204
-24 23 25 95 205
-25 24 26 96 206
-26 25 27 97 207
-27 26 28 98 208
-28 99 209 27 29
-29 100 210 28 30
-30 101 211 29 31
-31 102 212 30 32
-32 33 103 213 31
-33 34 104 214 32
-34 33 35 105 215
-35 34 36 106 216
-36 35 37 107 217
-37 36 38 108 218
-38 37 39 109 219
-39 110 220 38 40
-40 111 221 39 41
-41 112 222 40 42
-42 113 223 41 43
-43 44 114 224 42
-44 45 115 225 43
-45 44 46 116 226
-46 45 47 117 227
-47 46 48 118 228
-48 47 49 119 229
-49 48 50 120 230
-50 121 231 49 51
-51 122 232 50 52
-52 123 233 51 53
-53 124 234 52 54
-54 55 125 235 53
-55 56 126 236 54
-56 55 57 127 237
-57 56 58 128 238
-58 57 59 129 239
-59 58 60 130 240
-60 59 61 131 241
-61 132 242 60 62
-62 133 243 61 63
-63 134 244 62 64
-64 135 245 63 65
-65 66 136 246 64
-66 67 137 247 65
-67 66 68 138 248
-68 67 69 139 249
-69 68 70 140 250
-70 69 71 141 251
-71 70 72 142 252
-72 143 1 71 73
-73 144 2 72 74
-74 145 3 73 75
-75 146 4 74 76
-76 77 147 5 75
-77 78 148 6 76
-78 77 79 149 7
-79 78 80 150 8
-80 79 81 151 9
-81 80 82 152 10
-82 11 81 83 153
-83 154 12 82 84
-84 155 13 83 85
-85 156 14 84 86
-86 157 15 85 87
-87 88 158 16 86
-88 89 159 17 87
-89 88 90 160 18
-90 89 91 161 19
-91 90 92 162 20
-92 91 93 163 21
-93 22 92 94 164
-94 165 23 93 95
-95 166 24 94 96
-96 167 25 95 97
-97 168 26 96 98
-98 99 169 27 97
-99 100 170 28 98
-100 99 101 171 29
-101 100 102 172 30
-102 101 103 173 31
-103 102 104 174 32
-104 33 103 105 175
-105 176 34 104 106
-106 177 35 105 107
-107 178 36 106 108
-108 179 37 107 109
-109 110 180 38 108
-110 111 181 39 109
-111 110 112 182 40
-112 111 113 183 41
-113 112 114 184 42
-114 113 115 185 43
-115 44 114 116 186
-116 187 45 115 117
-117 188 46 116 118
-118 189 47 117 119
-119 190 48 118 120
-120 121 191 49 119
-121 122 192 50 120
-122 121 123 193 51
-123 122 124 194 52
-124 123 125 195 53
-125 124 126 196 54
-126 55 125 127 197
-127 198 56 126 128
-128 199 57 127 129
-129 200 58 128 130
-130 201 59 129 131
-131 132 202 60 130
-132 133 203 61 131
-133 132 134 204 62
-134 133 135 205 63
-135 134 136 206 64
-136 135 137 207 65
-137 66 136 138 208
-138 209 67 137 139
-139 210 68 138 140
-140 211 69 139 141
-141 212 70 140 142
-142 143 213 71 141
-143 144 214 72 142
-144 143 145 215 73
-145 144 146 216 74
-146 145 147 217 75
-147 146 148 218 76
-148 77 147 149 219
-149 220 78 148 150
-150 221 79 149 151
-151 222 80 150 152
-152 223 81 151 153
-153 154 224 82 152
-154 155 225 83 153
-155 154 156 226 84
-156 155 157 227 85
-157 156 158 228 86
-158 157 159 229 87
-159 88 158 160 230
-160 231 89 159 161
-161 232 90 160 162
-162 233 91 161 163
-163 234 92 162 164
-164 165 235 93 163
-165 166 236 94 164
-166 165 167 237 95
-167 166 168 238 96
-168 167 169 239 97
-169 168 170 240 98
-170 99 169 171 241
-171 242 100 170 172
-172 243 101 171 173
-173 244 102 172 174
-174 245 103 173 175
-175 176 246 104 174
-176 177 247 105 175
-177 176 178 248 106
-178 177 179 249 107
-179 178 180 250 108
-180 179 181 251 109
-181 110 180 182 252
-182 1 111 181 183
-183 2 112 182 184
-184 3 113 183 185
-185 4 114 184 186
-186 187 5 115 185
-187 188 6 116 186
-188 187 189 7 117
-189 188 190 8 118
-190 189 191 9 119
-191 190 192 10 120
-192 11 121 191 193
-193 12 122 192 194
-194 13 123 193 195
-195 14 124 194 196
-196 15 125 195 197
-197 198 16 126 196
-198 199 17 127 197
-199 198 200 18 128
-200 199 201 19 129
-201 200 202 20 130
-202 201 203 21 131
-203 22 132 202 204
-204 23 133 203 205
-205 24 134 204 206
-206 25 135 205 207
-207 26 136 206 208
-208 209 27 137 207
-209 210 28 138 208
-210 209 211 29 139
-211 210 212 30 140
-212 211 213 31 141
-213 212 214 32 142
-214 33 143 213 215
-215 34 144 214 216
-216 35 145 215 217
-217 36 146 216 218
-218 37 147 217 219
-219 220 38 148 218
-220 221 39 149 219
-221 220 222 40 150
-222 221 223 41 151
-223 222 224 42 152
-224 223 225 43 153
-225 44 154 224 226
-226 45 155 225 227
-227 46 156 226 228
-228 47 157 227 229
-229 48 158 228 230
-230 231 49 159 229
-231 232 50 160 230
-232 231 233 51 161
-233 232 234 52 162
-234 233 235 53 163
-235 234 236 54 164
-236 55 165 235 237
-237 56 166 236 238
-238 57 167 237 239
-239 58 168 238 240
-240 59 169 239 241
-241 242 60 170 240
-242 243 61 171 241
-243 242 244 62 172
-244 243 245 63 173
-245 244 246 64 174
-246 245 247 65 175
-247 66 176 246 248
-248 67 177 247 249
-249 68 178 248 250
-250 69 179 249 251
-251 70 180 250 252
-252 1 71 181 251
0