C4graphGraph forms for C4 [ 252, 5 ] = {4,4}_<16,2>

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 252, 5 ] = {4,4}_<16,2>.

(I) Following is a form readable by MAGMA:

g:=Graph<252|{ {2, 3}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {1, 2}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {3, 4}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {7, 8}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {17, 127}, {1, 127}, {1, 126}, {191, 192}, {63, 64}, {2, 128}, {83, 209}, {82, 208}, {79, 205}, {78, 204}, {75, 201}, {74, 200}, {71, 197}, {70, 196}, {67, 193}, {66, 192}, {63, 189}, {62, 188}, {59, 185}, {58, 184}, {55, 181}, {54, 180}, {51, 177}, {3, 129}, {6, 132}, {7, 133}, {10, 136}, {11, 137}, {14, 140}, {15, 141}, {18, 144}, {19, 145}, {22, 148}, {23, 149}, {26, 152}, {27, 153}, {30, 156}, {31, 157}, {34, 160}, {35, 161}, {38, 164}, {39, 165}, {42, 168}, {43, 169}, {46, 172}, {47, 173}, {50, 176}, {86, 212}, {87, 213}, {90, 216}, {91, 217}, {94, 220}, {95, 221}, {98, 224}, {99, 225}, {102, 228}, {103, 229}, {106, 232}, {107, 233}, {110, 236}, {111, 237}, {114, 240}, {115, 241}, {118, 244}, {119, 245}, {122, 248}, {123, 249}, {126, 252}, {127, 252}, {4, 130}, {85, 211}, {84, 210}, {77, 203}, {76, 202}, {69, 195}, {68, 194}, {61, 187}, {60, 186}, {53, 179}, {52, 178}, {5, 131}, {12, 138}, {13, 139}, {20, 146}, {21, 147}, {28, 154}, {29, 155}, {36, 162}, {37, 163}, {44, 170}, {45, 171}, {92, 218}, {93, 219}, {100, 226}, {101, 227}, {108, 234}, {109, 235}, {116, 242}, {117, 243}, {124, 250}, {125, 251}, {8, 134}, {73, 199}, {72, 198}, {57, 183}, {56, 182}, {9, 135}, {24, 150}, {25, 151}, {40, 166}, {41, 167}, {88, 214}, {89, 215}, {104, 230}, {105, 231}, {120, 246}, {121, 247}, {18, 128}, {83, 193}, {82, 192}, {63, 173}, {62, 172}, {59, 169}, {58, 168}, {55, 165}, {54, 164}, {51, 161}, {19, 129}, {22, 132}, {23, 133}, {26, 136}, {27, 137}, {30, 140}, {31, 141}, {50, 160}, {86, 196}, {87, 197}, {90, 200}, {91, 201}, {94, 204}, {95, 205}, {114, 224}, {115, 225}, {118, 228}, {119, 229}, {122, 232}, {123, 233}, {126, 236}, {20, 130}, {85, 195}, {84, 194}, {61, 171}, {60, 170}, {53, 163}, {52, 162}, {21, 131}, {28, 138}, {29, 139}, {92, 202}, {93, 203}, {116, 226}, {117, 227}, {124, 234}, {125, 235}, {16, 142}, {81, 207}, {80, 206}, {57, 167}, {56, 166}, {17, 143}, {24, 134}, {25, 135}, {48, 174}, {49, 175}, {88, 198}, {89, 199}, {112, 238}, {113, 239}, {120, 230}, {121, 231}, {32, 142}, {33, 143}, {48, 158}, {49, 159}, {96, 206}, {97, 207}, {112, 222}, {113, 223}, {34, 144}, {35, 145}, {38, 148}, {39, 149}, {42, 152}, {43, 153}, {46, 156}, {47, 157}, {98, 208}, {99, 209}, {102, 212}, {103, 213}, {106, 216}, {107, 217}, {110, 220}, {111, 221}, {36, 146}, {37, 147}, {44, 154}, {45, 155}, {100, 210}, {101, 211}, {108, 218}, {109, 219}, {32, 158}, {33, 159}, {40, 150}, {41, 151}, {96, 222}, {97, 223}, {104, 214}, {105, 215}, {1, 237}, {2, 238}, {3, 239}, {16, 252}, {64, 174}, {81, 191}, {80, 190}, {65, 175}, {66, 176}, {79, 189}, {78, 188}, {75, 185}, {74, 184}, {71, 181}, {70, 180}, {67, 177}, {4, 240}, {5, 241}, {6, 242}, {7, 243}, {12, 248}, {13, 249}, {14, 250}, {15, 251}, {68, 178}, {77, 187}, {76, 186}, {69, 179}, {8, 244}, {9, 245}, {10, 246}, {11, 247}, {64, 190}, {73, 183}, {72, 182}, {65, 191}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126)(127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252)
b: (2, 126)(3, 125)(4, 124)(5, 123)(6, 122)(7, 121)(8, 120)(9, 119)(10, 118)(11, 117)(12, 116)(13, 115)(14, 114)(15, 113)(16, 112)(17, 111)(18, 110)(19, 109)(20, 108)(21, 107)(22, 106)(23, 105)(24, 104)(25, 103)(26, 102)(27, 101)(28, 100)(29, 99)(30, 98)(31, 97)(32, 96)(33, 95)(34, 94)(35, 93)(36, 92)(37, 91)(38, 90)(39, 89)(40, 88)(41, 87)(42, 86)(43, 85)(44, 84)(45, 83)(46, 82)(47, 81)(48, 80)(49, 79)(50, 78)(51, 77)(52, 76)(53, 75)(54, 74)(55, 73)(56, 72)(57, 71)(58, 70)(59, 69)(60, 68)(61, 67)(62, 66)(63, 65)(127, 237)(128, 236)(129, 235)(130, 234)(131, 233)(132, 232)(133, 231)(134, 230)(135, 229)(136, 228)(137, 227)(138, 226)(139, 225)(140, 224)(141, 223)(142, 222)(143, 221)(144, 220)(145, 219)(146, 218)(147, 217)(148, 216)(149, 215)(150, 214)(151, 213)(152, 212)(153, 211)(154, 210)(155, 209)(156, 208)(157, 207)(158, 206)(159, 205)(160, 204)(161, 203)(162, 202)(163, 201)(164, 200)(165, 199)(166, 198)(167, 197)(168, 196)(169, 195)(170, 194)(171, 193)(172, 192)(173, 191)(174, 190)(175, 189)(176, 188)(177, 187)(178, 186)(179, 185)(180, 184)(181, 183)(238, 252)(239, 251)(240, 250)(241, 249)(242, 248)(243, 247)(244, 246)
c: (2, 127)(3, 17)(4, 143)(5, 33)(6, 159)(7, 49)(8, 175)(9, 65)(10, 191)(11, 81)(12, 207)(13, 97)(14, 223)(15, 113)(16, 239)(18, 129)(20, 145)(21, 35)(22, 161)(23, 51)(24, 177)(25, 67)(26, 193)(27, 83)(28, 209)(29, 99)(30, 225)(31, 115)(32, 241)(34, 131)(36, 147)(38, 163)(39, 53)(40, 179)(41, 69)(42, 195)(43, 85)(44, 211)(45, 101)(46, 227)(47, 117)(48, 243)(50, 133)(52, 149)(54, 165)(56, 181)(57, 71)(58, 197)(59, 87)(60, 213)(61, 103)(62, 229)(63, 119)(64, 245)(66, 135)(68, 151)(70, 167)(72, 183)(74, 199)(75, 89)(76, 215)(77, 105)(78, 231)(79, 121)(80, 247)(82, 137)(84, 153)(86, 169)(88, 185)(90, 201)(92, 217)(93, 107)(94, 233)(95, 123)(96, 249)(98, 139)(100, 155)(102, 171)(104, 187)(106, 203)(108, 219)(110, 235)(111, 125)(112, 251)(114, 141)(116, 157)(118, 173)(120, 189)(122, 205)(124, 221)(126, 237)(130, 144)(132, 160)(134, 176)(136, 192)(138, 208)(140, 224)(142, 240)(148, 162)(150, 178)(152, 194)(154, 210)(156, 226)(158, 242)(166, 180)(168, 196)(170, 212)(172, 228)(174, 244)(184, 198)(186, 214)(188, 230)(190, 246)(202, 216)(204, 232)(206, 248)(220, 234)(222, 250)(238, 252)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 252, 5 ]
252
-1 2 126 127 237
-2 1 3 128 238
-3 2 4 129 239
-4 3 5 130 240
-5 4 6 131 241
-6 132 242 5 7
-7 133 243 6 8
-8 134 244 7 9
-9 135 245 8 10
-10 11 136 246 9
-11 12 137 247 10
-12 11 13 138 248
-13 12 14 139 249
-14 13 15 140 250
-15 14 16 141 251
-16 15 17 142 252
-17 143 16 127 18
-18 144 17 128 19
-19 145 18 129 20
-20 146 19 130 21
-21 22 147 20 131
-22 132 23 148 21
-23 22 133 24 149
-24 23 134 25 150
-25 24 135 26 151
-26 25 136 27 152
-27 26 137 28 153
-28 154 27 138 29
-29 155 28 139 30
-30 156 29 140 31
-31 157 30 141 32
-32 33 158 31 142
-33 143 34 159 32
-34 33 144 35 160
-35 34 145 36 161
-36 35 146 37 162
-37 36 147 38 163
-38 37 148 39 164
-39 165 38 149 40
-40 166 39 150 41
-41 167 40 151 42
-42 168 41 152 43
-43 44 169 42 153
-44 154 45 170 43
-45 44 155 46 171
-46 45 156 47 172
-47 46 157 48 173
-48 47 158 49 174
-49 48 159 50 175
-50 176 49 160 51
-51 177 50 161 52
-52 178 51 162 53
-53 179 52 163 54
-54 55 180 53 164
-55 165 56 181 54
-56 55 166 57 182
-57 56 167 58 183
-58 57 168 59 184
-59 58 169 60 185
-60 59 170 61 186
-61 187 60 171 62
-62 188 61 172 63
-63 189 62 173 64
-64 190 63 174 65
-65 66 191 64 175
-66 176 67 192 65
-67 66 177 68 193
-68 67 178 69 194
-69 68 179 70 195
-70 69 180 71 196
-71 70 181 72 197
-72 198 71 182 73
-73 199 72 183 74
-74 200 73 184 75
-75 201 74 185 76
-76 77 202 75 186
-77 187 78 203 76
-78 77 188 79 204
-79 78 189 80 205
-80 79 190 81 206
-81 80 191 82 207
-82 81 192 83 208
-83 209 82 193 84
-84 210 83 194 85
-85 211 84 195 86
-86 212 85 196 87
-87 88 213 86 197
-88 198 89 214 87
-89 88 199 90 215
-90 89 200 91 216
-91 90 201 92 217
-92 91 202 93 218
-93 92 203 94 219
-94 220 93 204 95
-95 221 94 205 96
-96 222 95 206 97
-97 223 96 207 98
-98 99 224 97 208
-99 209 100 225 98
-100 99 210 101 226
-101 100 211 102 227
-102 101 212 103 228
-103 102 213 104 229
-104 103 214 105 230
-105 231 104 215 106
-106 232 105 216 107
-107 233 106 217 108
-108 234 107 218 109
-109 110 235 108 219
-110 220 111 236 109
-111 110 221 112 237
-112 111 222 113 238
-113 112 223 114 239
-114 113 224 115 240
-115 114 225 116 241
-116 242 115 226 117
-117 243 116 227 118
-118 244 117 228 119
-119 245 118 229 120
-120 121 246 119 230
-121 231 122 247 120
-122 121 232 123 248
-123 122 233 124 249
-124 123 234 125 250
-125 124 235 126 251
-126 1 125 236 252
-127 1 17 128 252
-128 2 127 18 129
-129 3 128 19 130
-130 4 129 20 131
-131 132 5 130 21
-132 22 133 6 131
-133 132 23 134 7
-134 133 24 135 8
-135 134 25 136 9
-136 135 26 137 10
-137 11 136 27 138
-138 12 137 28 139
-139 13 138 29 140
-140 14 139 30 141
-141 15 140 31 142
-142 143 16 141 32
-143 33 144 17 142
-144 143 34 145 18
-145 144 35 146 19
-146 145 36 147 20
-147 146 37 148 21
-148 22 147 38 149
-149 23 148 39 150
-150 24 149 40 151
-151 25 150 41 152
-152 26 151 42 153
-153 154 27 152 43
-154 44 155 28 153
-155 154 45 156 29
-156 155 46 157 30
-157 156 47 158 31
-158 157 48 159 32
-159 33 158 49 160
-160 34 159 50 161
-161 35 160 51 162
-162 36 161 52 163
-163 37 162 53 164
-164 165 38 163 54
-165 55 166 39 164
-166 165 56 167 40
-167 166 57 168 41
-168 167 58 169 42
-169 168 59 170 43
-170 44 169 60 171
-171 45 170 61 172
-172 46 171 62 173
-173 47 172 63 174
-174 48 173 64 175
-175 176 49 174 65
-176 66 177 50 175
-177 176 67 178 51
-178 177 68 179 52
-179 178 69 180 53
-180 179 70 181 54
-181 55 180 71 182
-182 56 181 72 183
-183 57 182 73 184
-184 58 183 74 185
-185 59 184 75 186
-186 187 60 185 76
-187 77 188 61 186
-188 187 78 189 62
-189 188 79 190 63
-190 189 80 191 64
-191 190 81 192 65
-192 66 191 82 193
-193 67 192 83 194
-194 68 193 84 195
-195 69 194 85 196
-196 70 195 86 197
-197 198 71 196 87
-198 88 199 72 197
-199 198 89 200 73
-200 199 90 201 74
-201 200 91 202 75
-202 201 92 203 76
-203 77 202 93 204
-204 78 203 94 205
-205 79 204 95 206
-206 80 205 96 207
-207 81 206 97 208
-208 209 82 207 98
-209 99 210 83 208
-210 209 100 211 84
-211 210 101 212 85
-212 211 102 213 86
-213 212 103 214 87
-214 88 213 104 215
-215 89 214 105 216
-216 90 215 106 217
-217 91 216 107 218
-218 92 217 108 219
-219 220 93 218 109
-220 110 221 94 219
-221 220 111 222 95
-222 221 112 223 96
-223 222 113 224 97
-224 223 114 225 98
-225 99 224 115 226
-226 100 225 116 227
-227 101 226 117 228
-228 102 227 118 229
-229 103 228 119 230
-230 231 104 229 120
-231 121 232 105 230
-232 231 122 233 106
-233 232 123 234 107
-234 233 124 235 108
-235 234 125 236 109
-236 110 235 126 237
-237 1 111 236 238
-238 2 112 237 239
-239 3 113 238 240
-240 4 114 239 241
-241 242 5 115 240
-242 243 6 116 241
-243 242 244 7 117
-244 243 245 8 118
-245 244 246 9 119
-246 245 247 10 120
-247 11 121 246 248
-248 12 122 247 249
-249 13 123 248 250
-250 14 124 249 251
-251 15 125 250 252
-252 16 126 127 251
0

**************