C4graphGraph forms for C4 [ 252, 7 ] = {4,4}_<24,18>

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 252, 7 ] = {4,4}_<24,18>.

(I) Following is a form readable by MAGMA:

g:=Graph<252|{ {2, 3}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {198, 199}, {200, 201}, {1, 2}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {3, 4}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {107, 108}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {195, 196}, {7, 8}, {247, 248}, {231, 232}, {215, 216}, {103, 104}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {199, 200}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {1, 43}, {209, 251}, {208, 250}, {85, 127}, {84, 126}, {81, 123}, {80, 122}, {69, 111}, {68, 110}, {65, 107}, {64, 106}, {4, 46}, {5, 47}, {16, 58}, {17, 59}, {20, 62}, {21, 63}, {128, 170}, {129, 171}, {132, 174}, {133, 175}, {144, 186}, {145, 187}, {148, 190}, {149, 191}, {192, 234}, {193, 235}, {196, 238}, {197, 239}, {1, 42}, {85, 126}, {2, 44}, {210, 252}, {83, 125}, {82, 124}, {67, 109}, {66, 108}, {3, 45}, {18, 60}, {19, 61}, {130, 172}, {131, 173}, {146, 188}, {147, 189}, {194, 236}, {195, 237}, {211, 252}, {6, 48}, {207, 249}, {206, 248}, {79, 121}, {78, 120}, {71, 113}, {70, 112}, {7, 49}, {14, 56}, {15, 57}, {134, 176}, {135, 177}, {142, 184}, {143, 185}, {198, 240}, {199, 241}, {8, 50}, {205, 247}, {204, 246}, {201, 243}, {77, 119}, {76, 118}, {73, 115}, {72, 114}, {9, 51}, {12, 54}, {13, 55}, {136, 178}, {137, 179}, {140, 182}, {141, 183}, {200, 242}, {10, 52}, {203, 245}, {202, 244}, {75, 117}, {74, 116}, {11, 53}, {138, 180}, {139, 181}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {22, 64}, {63, 105}, {62, 104}, {23, 65}, {30, 72}, {31, 73}, {54, 96}, {55, 97}, {150, 192}, {151, 193}, {158, 200}, {159, 201}, {182, 224}, {183, 225}, {190, 232}, {191, 233}, {24, 66}, {61, 103}, {60, 102}, {25, 67}, {28, 70}, {29, 71}, {56, 98}, {57, 99}, {152, 194}, {153, 195}, {156, 198}, {157, 199}, {184, 226}, {185, 227}, {188, 230}, {189, 231}, {26, 68}, {59, 101}, {58, 100}, {27, 69}, {154, 196}, {155, 197}, {186, 228}, {187, 229}, {32, 74}, {33, 75}, {36, 78}, {37, 79}, {48, 90}, {49, 91}, {52, 94}, {53, 95}, {160, 202}, {161, 203}, {164, 206}, {165, 207}, {176, 218}, {177, 219}, {180, 222}, {181, 223}, {34, 76}, {35, 77}, {50, 92}, {51, 93}, {162, 204}, {163, 205}, {178, 220}, {179, 221}, {38, 80}, {39, 81}, {46, 88}, {47, 89}, {166, 208}, {167, 209}, {174, 216}, {175, 217}, {40, 82}, {41, 83}, {44, 86}, {45, 87}, {168, 210}, {169, 211}, {172, 214}, {173, 215}, {169, 210}, {42, 84}, {43, 85}, {170, 212}, {171, 213}, {43, 84}, {63, 64}, {191, 192}, {86, 128}, {95, 137}, {94, 136}, {87, 129}, {118, 160}, {119, 161}, {126, 168}, {127, 169}, {127, 168}, {1, 217}, {2, 218}, {3, 219}, {4, 220}, {5, 221}, {6, 222}, {7, 223}, {32, 248}, {33, 249}, {34, 250}, {35, 251}, {36, 252}, {88, 130}, {93, 135}, {92, 134}, {89, 131}, {120, 162}, {121, 163}, {124, 166}, {125, 167}, {90, 132}, {91, 133}, {122, 164}, {123, 165}, {8, 224}, {9, 225}, {10, 226}, {11, 227}, {12, 228}, {13, 229}, {14, 230}, {15, 231}, {24, 240}, {25, 241}, {26, 242}, {27, 243}, {28, 244}, {29, 245}, {30, 246}, {31, 247}, {96, 138}, {101, 143}, {100, 142}, {97, 139}, {112, 154}, {113, 155}, {116, 158}, {117, 159}, {98, 140}, {99, 141}, {114, 156}, {115, 157}, {38, 212}, {39, 213}, {42, 216}, {37, 211}, {110, 152}, {103, 145}, {102, 144}, {111, 153}, {16, 232}, {17, 233}, {18, 234}, {19, 235}, {20, 236}, {21, 237}, {22, 238}, {23, 239}, {104, 146}, {109, 151}, {108, 150}, {105, 147}, {40, 214}, {107, 149}, {106, 148}, {41, 215}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 43)(3, 85)(4, 127)(5, 169)(6, 211)(7, 37)(8, 79)(9, 121)(10, 163)(11, 205)(12, 247)(13, 31)(14, 73)(15, 115)(16, 157)(17, 199)(18, 241)(19, 25)(20, 67)(21, 109)(22, 151)(23, 193)(24, 235)(26, 61)(27, 103)(28, 145)(29, 187)(30, 229)(32, 55)(33, 97)(34, 139)(35, 181)(36, 223)(38, 49)(39, 91)(40, 133)(41, 175)(42, 217)(45, 86)(46, 128)(47, 170)(48, 212)(50, 80)(51, 122)(52, 164)(53, 206)(54, 248)(56, 74)(57, 116)(58, 158)(59, 200)(60, 242)(62, 68)(63, 110)(64, 152)(65, 194)(66, 236)(69, 104)(70, 146)(71, 188)(72, 230)(75, 98)(76, 140)(77, 182)(78, 224)(81, 92)(82, 134)(83, 176)(84, 218)(88, 129)(89, 171)(90, 213)(93, 123)(94, 165)(95, 207)(96, 249)(99, 117)(100, 159)(101, 201)(102, 243)(105, 111)(106, 153)(107, 195)(108, 237)(112, 147)(113, 189)(114, 231)(118, 141)(119, 183)(120, 225)(124, 135)(125, 177)(126, 219)(131, 172)(132, 214)(136, 166)(137, 208)(138, 250)(142, 160)(143, 202)(144, 244)(148, 154)(149, 196)(150, 238)(155, 190)(156, 232)(161, 184)(162, 226)(167, 178)(168, 220)(174, 215)(179, 209)(180, 251)(185, 203)(186, 245)(191, 197)(192, 239)(198, 233)(204, 227)(210, 221)(222, 252)(228, 246)(234, 240)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42)(43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84)(85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126)(127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168)(169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210)(211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252)
c: (2, 42)(3, 41)(4, 40)(5, 39)(6, 38)(7, 37)(8, 36)(9, 35)(10, 34)(11, 33)(12, 32)(13, 31)(14, 30)(15, 29)(16, 28)(17, 27)(18, 26)(19, 25)(20, 24)(21, 23)(43, 217)(44, 216)(45, 215)(46, 214)(47, 213)(48, 212)(49, 211)(50, 252)(51, 251)(52, 250)(53, 249)(54, 248)(55, 247)(56, 246)(57, 245)(58, 244)(59, 243)(60, 242)(61, 241)(62, 240)(63, 239)(64, 238)(65, 237)(66, 236)(67, 235)(68, 234)(69, 233)(70, 232)(71, 231)(72, 230)(73, 229)(74, 228)(75, 227)(76, 226)(77, 225)(78, 224)(79, 223)(80, 222)(81, 221)(82, 220)(83, 219)(84, 218)(85, 175)(86, 174)(87, 173)(88, 172)(89, 171)(90, 170)(91, 169)(92, 210)(93, 209)(94, 208)(95, 207)(96, 206)(97, 205)(98, 204)(99, 203)(100, 202)(101, 201)(102, 200)(103, 199)(104, 198)(105, 197)(106, 196)(107, 195)(108, 194)(109, 193)(110, 192)(111, 191)(112, 190)(113, 189)(114, 188)(115, 187)(116, 186)(117, 185)(118, 184)(119, 183)(120, 182)(121, 181)(122, 180)(123, 179)(124, 178)(125, 177)(126, 176)(127, 133)(128, 132)(129, 131)(134, 168)(135, 167)(136, 166)(137, 165)(138, 164)(139, 163)(140, 162)(141, 161)(142, 160)(143, 159)(144, 158)(145, 157)(146, 156)(147, 155)(148, 154)(149, 153)(150, 152)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 252, 7 ]
252
-1 2 217 42 43
-2 44 1 3 218
-3 45 2 4 219
-4 220 46 3 5
-5 221 47 4 6
-6 222 48 5 7
-7 223 49 6 8
-8 224 50 7 9
-9 225 51 8 10
-10 11 226 52 9
-11 12 227 53 10
-12 11 13 228 54
-13 55 12 14 229
-14 56 13 15 230
-15 231 57 14 16
-16 232 58 15 17
-17 233 59 16 18
-18 234 60 17 19
-19 235 61 18 20
-20 236 62 19 21
-21 22 237 63 20
-22 23 238 64 21
-23 22 24 239 65
-24 66 23 25 240
-25 67 24 26 241
-26 242 68 25 27
-27 243 69 26 28
-28 244 70 27 29
-29 245 71 28 30
-30 246 72 29 31
-31 247 73 30 32
-32 33 248 74 31
-33 34 249 75 32
-34 33 35 250 76
-35 77 34 36 251
-36 78 35 37 252
-37 79 211 36 38
-38 80 212 37 39
-39 81 213 38 40
-40 82 214 39 41
-41 83 215 40 42
-42 1 84 216 41
-43 44 1 84 85
-44 45 2 86 43
-45 44 46 3 87
-46 88 45 47 4
-47 89 46 48 5
-48 90 47 49 6
-49 91 48 50 7
-50 92 49 51 8
-51 93 50 52 9
-52 94 51 53 10
-53 11 95 52 54
-54 55 12 96 53
-55 56 13 97 54
-56 55 57 14 98
-57 99 56 58 15
-58 100 57 59 16
-59 101 58 60 17
-60 102 59 61 18
-61 103 60 62 19
-62 104 61 63 20
-63 105 62 64 21
-64 22 106 63 65
-65 66 23 107 64
-66 67 24 108 65
-67 66 68 25 109
-68 110 67 69 26
-69 111 68 70 27
-70 112 69 71 28
-71 113 70 72 29
-72 114 71 73 30
-73 115 72 74 31
-74 116 73 75 32
-75 33 117 74 76
-76 77 34 118 75
-77 78 35 119 76
-78 77 79 36 120
-79 121 78 80 37
-80 122 79 81 38
-81 123 80 82 39
-82 124 81 83 40
-83 125 82 84 41
-84 126 83 42 43
-85 126 127 86 43
-86 44 128 85 87
-87 88 45 129 86
-88 89 46 130 87
-89 88 90 47 131
-90 132 89 91 48
-91 133 90 92 49
-92 134 91 93 50
-93 135 92 94 51
-94 136 93 95 52
-95 137 94 96 53
-96 138 95 97 54
-97 55 139 96 98
-98 99 56 140 97
-99 100 57 141 98
-100 99 101 58 142
-101 143 100 102 59
-102 144 101 103 60
-103 145 102 104 61
-104 146 103 105 62
-105 147 104 106 63
-106 148 105 107 64
-107 149 106 108 65
-108 66 150 107 109
-109 110 67 151 108
-110 111 68 152 109
-111 110 112 69 153
-112 154 111 113 70
-113 155 112 114 71
-114 156 113 115 72
-115 157 114 116 73
-116 158 115 117 74
-117 159 116 118 75
-118 160 117 119 76
-119 77 161 118 120
-120 121 78 162 119
-121 122 79 163 120
-122 121 123 80 164
-123 165 122 124 81
-124 166 123 125 82
-125 167 124 126 83
-126 168 125 84 85
-127 168 169 128 85
-128 170 127 129 86
-129 171 128 130 87
-130 88 172 129 131
-131 132 89 173 130
-132 133 90 174 131
-133 132 134 91 175
-134 176 133 135 92
-135 177 134 136 93
-136 178 135 137 94
-137 179 136 138 95
-138 180 137 139 96
-139 181 138 140 97
-140 182 139 141 98
-141 99 183 140 142
-142 143 100 184 141
-143 144 101 185 142
-144 143 145 102 186
-145 187 144 146 103
-146 188 145 147 104
-147 189 146 148 105
-148 190 147 149 106
-149 191 148 150 107
-150 192 149 151 108
-151 193 150 152 109
-152 110 194 151 153
-153 154 111 195 152
-154 155 112 196 153
-155 154 156 113 197
-156 198 155 157 114
-157 199 156 158 115
-158 200 157 159 116
-159 201 158 160 117
-160 202 159 161 118
-161 203 160 162 119
-162 204 161 163 120
-163 121 205 162 164
-164 165 122 206 163
-165 166 123 207 164
-166 165 167 124 208
-167 209 166 168 125
-168 210 167 126 127
-169 210 211 170 127
-170 212 169 171 128
-171 213 170 172 129
-172 214 171 173 130
-173 215 172 174 131
-174 132 216 173 175
-175 176 133 217 174
-176 177 134 218 175
-177 176 178 135 219
-178 220 177 179 136
-179 221 178 180 137
-180 222 179 181 138
-181 223 180 182 139
-182 224 181 183 140
-183 225 182 184 141
-184 226 183 185 142
-185 143 227 184 186
-186 187 144 228 185
-187 188 145 229 186
-188 187 189 146 230
-189 231 188 190 147
-190 232 189 191 148
-191 233 190 192 149
-192 234 191 193 150
-193 235 192 194 151
-194 236 193 195 152
-195 237 194 196 153
-196 154 238 195 197
-197 198 155 239 196
-198 199 156 240 197
-199 198 200 157 241
-200 242 199 201 158
-201 243 200 202 159
-202 244 201 203 160
-203 245 202 204 161
-204 246 203 205 162
-205 247 204 206 163
-206 248 205 207 164
-207 165 249 206 208
-208 209 166 250 207
-209 210 167 251 208
-210 209 168 169 252
-211 212 37 169 252
-212 211 213 38 170
-213 212 214 39 171
-214 213 215 40 172
-215 214 216 41 173
-216 215 217 42 174
-217 1 216 218 175
-218 176 2 217 219
-219 220 177 3 218
-220 221 178 4 219
-221 220 222 179 5
-222 221 223 180 6
-223 222 224 181 7
-224 223 225 182 8
-225 224 226 183 9
-226 225 227 184 10
-227 11 226 228 185
-228 12 227 229 186
-229 187 13 228 230
-230 231 188 14 229
-231 232 189 15 230
-232 231 233 190 16
-233 232 234 191 17
-234 233 235 192 18
-235 234 236 193 19
-236 235 237 194 20
-237 236 238 195 21
-238 22 237 239 196
-239 23 238 240 197
-240 198 24 239 241
-241 242 199 25 240
-242 243 200 26 241
-243 242 244 201 27
-244 243 245 202 28
-245 244 246 203 29
-246 245 247 204 30
-247 246 248 205 31
-248 247 249 206 32
-249 33 248 250 207
-250 34 249 251 208
-251 209 35 250 252
-252 210 211 36 251
0

**************