C4graphGraph forms for C4 [ 252, 22 ] = PL(MC3(6,21,1,13,8,0,1),[6^21,14^9])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 252, 22 ] = PL(MC3(6,21,1,13,8,0,1),[6^21,14^9]).

(I) Following is a form readable by MAGMA:

g:=Graph<252|{ {51, 127}, {22, 127}, {2, 127}, {1, 127}, {62, 190}, {101, 229}, {94, 222}, {79, 207}, {84, 212}, {32, 161}, {91, 218}, {58, 187}, {69, 196}, {20, 150}, {113, 243}, {95, 221}, {38, 164}, {83, 209}, {109, 238}, {119, 244}, {21, 145}, {55, 179}, {77, 201}, {78, 202}, {87, 211}, {68, 193}, {125, 248}, {71, 194}, {73, 204}, {76, 201}, {42, 172}, {107, 237}, {97, 231}, {53, 179}, {45, 171}, {82, 212}, {83, 213}, {86, 208}, {6, 129}, {49, 182}, {44, 171}, {15, 136}, {5, 140}, {91, 210}, {55, 190}, {47, 166}, {32, 169}, {14, 132}, {93, 215}, {64, 202}, {72, 194}, {78, 197}, {122, 241}, {115, 248}, {98, 233}, {19, 159}, {118, 250}, {117, 249}, {12, 129}, {126, 243}, {22, 155}, {74, 199}, {23, 153}, {120, 246}, {60, 178}, {3, 140}, {34, 173}, {75, 196}, {13, 157}, {115, 227}, {10, 155}, {30, 143}, {11, 153}, {116, 230}, {25, 139}, {26, 137}, {18, 134}, {31, 139}, {28, 136}, {105, 252}, {13, 155}, {123, 237}, {103, 241}, {57, 175}, {47, 185}, {46, 184}, {39, 177}, {36, 178}, {33, 183}, {68, 210}, {35, 180}, {126, 233}, {118, 225}, {95, 200}, {66, 213}, {48, 168}, {88, 192}, {31, 134}, {52, 173}, {7, 157}, {120, 226}, {106, 240}, {33, 187}, {12, 151}, {62, 165}, {65, 218}, {84, 207}, {5, 153}, {57, 165}, {4, 153}, {116, 233}, {66, 223}, {17, 143}, {100, 250}, {16, 176}, {28, 188}, {84, 244}, {38, 135}, {111, 206}, {93, 252}, {64, 225}, {79, 238}, {8, 170}, {56, 154}, {53, 151}, {46, 140}, {62, 156}, {65, 227}, {87, 245}, {50, 145}, {104, 203}, {97, 194}, {96, 195}, {89, 250}, {61, 158}, {3, 167}, {117, 209}, {14, 170}, {82, 246}, {33, 132}, {124, 217}, {111, 202}, {108, 201}, {105, 204}, {58, 159}, {46, 139}, {63, 154}, {67, 229}, {114, 212}, {102, 192}, {48, 151}, {6, 174}, {121, 209}, {109, 197}, {34, 138}, {19, 187}, {81, 249}, {112, 217}, {80, 250}, {104, 194}, {71, 236}, {98, 201}, {92, 247}, {25, 181}, {27, 183}, {75, 231}, {10, 167}, {119, 218}, {54, 155}, {35, 142}, {29, 176}, {8, 166}, {9, 167}, {88, 246}, {20, 187}, {75, 251}, {94, 238}, {76, 252}, {70, 247}, {122, 203}, {103, 214}, {101, 212}, {85, 228}, {7, 181}, {124, 206}, {113, 195}, {36, 150}, {10, 185}, {15, 188}, {49, 133}, {58, 142}, {85, 225}, {45, 152}, {100, 209}, {60, 137}, {59, 142}, {24, 174}, {110, 216}, {50, 132}, {40, 158}, {80, 230}, {33, 150}, {106, 221}, {55, 128}, {81, 230}, {21, 173}, {119, 207}, {96, 216}, {90, 226}, {28, 164}, {72, 240}, {74, 242}, {14, 183}, {92, 229}, {90, 227}, {41, 144}, {20, 173}, {3, 185}, {121, 195}, {19, 169}, {86, 236}, {37, 158}, {59, 128}, {39, 156}, {67, 248}, {11, 183}, {30, 162}, {27, 167}, {26, 166}, {24, 164}, {15, 179}, {52, 137}, {17, 175}, {44, 146}, {43, 149}, {42, 148}, {27, 219}, {125, 189}, {106, 170}, {30, 222}, {77, 141}, {18, 211}, {22, 215}, {4, 198}, {18, 208}, {69, 135}, {79, 141}, {6, 197}, {118, 181}, {95, 156}, {91, 152}, {2, 199}, {40, 237}, {26, 223}, {70, 131}, {1, 199}, {102, 160}, {101, 163}, {49, 247}, {29, 219}, {24, 222}, {13, 203}, {83, 149}, {1, 198}, {123, 188}, {53, 242}, {41, 238}, {30, 217}, {17, 217}, {41, 225}, {73, 129}, {89, 145}, {5, 204}, {123, 178}, {95, 150}, {12, 197}, {73, 128}, {7, 205}, {124, 182}, {28, 215}, {57, 242}, {84, 159}, {7, 203}, {31, 211}, {16, 220}, {60, 241}, {90, 151}, {74, 135}, {68, 138}, {107, 165}, {103, 169}, {83, 157}, {3, 204}, {114, 189}, {112, 191}, {35, 236}, {25, 214}, {11, 219}, {114, 162}, {108, 188}, {16, 192}, {64, 144}, {66, 146}, {85, 133}, {75, 154}, {20, 198}, {125, 175}, {54, 228}, {63, 237}, {48, 227}, {122, 169}, {112, 163}, {25, 205}, {116, 160}, {110, 186}, {65, 149}, {9, 220}, {107, 190}, {49, 228}, {45, 248}, {36, 241}, {65, 148}, {71, 146}, {34, 244}, {126, 168}, {120, 174}, {119, 161}, {63, 233}, {22, 193}, {50, 229}, {43, 243}, {92, 132}, {90, 130}, {51, 235}, {50, 234}, {47, 247}, {64, 152}, {32, 249}, {117, 172}, {113, 168}, {111, 182}, {107, 178}, {44, 245}, {87, 142}, {23, 205}, {54, 236}, {78, 148}, {81, 139}, {86, 140}, {39, 252}, {102, 189}, {99, 184}, {60, 231}, {72, 147}, {42, 246}, {115, 175}, {109, 177}, {99, 191}, {55, 235}, {10, 215}, {105, 180}, {53, 232}, {2, 220}, {110, 176}, {100, 186}, {37, 251}, {56, 231}, {124, 163}, {61, 226}, {76, 147}, {85, 138}, {16, 240}, {104, 136}, {99, 131}, {67, 163}, {18, 243}, {102, 135}, {38, 199}, {37, 196}, {21, 244}, {2, 224}, {68, 166}, {72, 170}, {11, 232}, {108, 143}, {34, 193}, {17, 242}, {66, 161}, {12, 232}, {56, 220}, {15, 235}, {92, 185}, {9, 239}, {115, 149}, {100, 130}, {89, 191}, {59, 221}, {54, 208}, {41, 207}, {40, 206}, {61, 219}, {62, 216}, {103, 128}, {8, 224}, {117, 157}, {105, 129}, {97, 137}, {67, 171}, {6, 239}, {93, 180}, {58, 211}, {13, 228}, {9, 224}, {19, 249}, {80, 186}, {40, 195}, {52, 223}, {78, 165}, {4, 232}, {89, 181}, {36, 200}, {29, 240}, {59, 214}, {37, 200}, {69, 168}, {86, 184}, {5, 234}, {98, 141}, {94, 177}, {42, 218}, {96, 144}, {70, 182}, {79, 191}, {80, 160}, {82, 162}, {63, 206}, {51, 193}, {122, 136}, {99, 145}, {97, 147}, {52, 198}, {57, 202}, {71, 180}, {27, 239}, {123, 143}, {114, 134}, {113, 133}, {48, 196}, {61, 200}, {88, 174}, {106, 156}, {24, 239}, {116, 131}, {111, 152}, {73, 190}, {77, 186}, {38, 222}, {98, 154}, {56, 192}, {46, 214}, {69, 189}, {88, 160}, {31, 230}, {109, 148}, {93, 164}, {44, 213}, {74, 179}, {1, 251}, {120, 130}, {104, 146}, {101, 159}, {91, 161}, {26, 224}, {14, 245}, {125, 134}, {121, 130}, {43, 208}, {23, 235}, {121, 133}, {118, 138}, {94, 162}, {87, 171}, {8, 245}, {126, 131}, {112, 141}, {47, 210}, {23, 234}, {76, 177}, {77, 176}, {81, 172}, {35, 221}, {110, 144}, {96, 158}, {51, 205}, {43, 213}, {70, 184}, {82, 172}, {4, 251}, {108, 147}, {45, 210}, {39, 216}, {32, 223}, {29, 226}, {21, 234} }>;

(II) A more general form is to represent the graph as the orbit of {51, 127} under the group generated by the following permutations:

a: (1, 2)(3, 5)(4, 9)(6, 12)(7, 13)(8, 20)(10, 23)(11, 27)(14, 33)(15, 28)(16, 37)(17, 30)(18, 31)(19, 44)(21, 47)(22, 51)(24, 53)(25, 54)(26, 52)(29, 61)(32, 66)(34, 68)(35, 59)(36, 72)(38, 74)(39, 62)(40, 77)(41, 64)(42, 65)(43, 81)(45, 84)(46, 86)(48, 88)(49, 89)(50, 92)(55, 93)(56, 75)(57, 94)(58, 87)(60, 97)(63, 98)(67, 101)(69, 102)(70, 99)(71, 103)(73, 105)(76, 107)(78, 109)(79, 111)(80, 113)(82, 115)(83, 117)(85, 118)(90, 120)(91, 119)(95, 106)(96, 110)(100, 121)(104, 122)(108, 123)(112, 124)(114, 125)(116, 126)(128, 180)(133, 250)(139, 208)(141, 206)(145, 247)(146, 169)(147, 178)(149, 172)(150, 170)(151, 174)(152, 207)(153, 167)(155, 205)(158, 176)(159, 171)(160, 168)(162, 175)(164, 179)(165, 177)(166, 173)(181, 228)(182, 191)(185, 234)(186, 195)(187, 245)(190, 252)(192, 196)(194, 241)(198, 224)(200, 240)(201, 237)(202, 238)(210, 244)(212, 248)(213, 249)(214, 236)(215, 235)(220, 251)(222, 242)(227, 246)(230, 243)(232, 239)
b: (2, 4)(3, 14)(5, 8)(6, 29)(7, 32)(9, 11)(10, 33)(12, 16)(13, 19)(15, 60)(17, 63)(20, 22)(21, 68)(23, 26)(24, 61)(25, 66)(28, 36)(30, 40)(31, 43)(37, 38)(42, 100)(44, 46)(45, 99)(47, 50)(48, 102)(49, 101)(51, 52)(53, 56)(54, 58)(55, 97)(57, 98)(59, 71)(62, 76)(64, 79)(65, 80)(67, 70)(72, 73)(74, 75)(77, 78)(81, 83)(82, 121)(84, 85)(86, 87)(88, 90)(89, 91)(93, 95)(94, 96)(103, 104)(105, 106)(107, 108)(109, 110)(111, 112)(113, 114)(115, 116)(118, 119)(125, 126)(127, 198)(128, 194)(129, 240)(130, 246)(131, 248)(132, 185)(133, 212)(134, 243)(135, 196)(136, 241)(137, 235)(138, 244)(139, 213)(140, 245)(141, 202)(142, 236)(143, 237)(144, 238)(145, 210)(146, 214)(147, 190)(148, 186)(149, 230)(150, 215)(151, 192)(152, 191)(153, 224)(154, 242)(155, 187)(156, 252)(157, 249)(158, 222)(159, 228)(160, 227)(161, 181)(162, 195)(163, 182)(164, 200)(165, 201)(166, 234)(167, 183)(168, 189)(169, 203)(170, 204)(171, 184)(172, 209)(173, 193)(174, 226)(175, 233)(176, 197)(177, 216)(178, 188)(179, 231)(180, 221)(199, 251)(205, 223)(206, 217)(207, 225)(208, 211)(218, 250)(219, 239)(220, 232)(229, 247)
c: (2, 4)(3, 29)(5, 16)(6, 14)(7, 63)(8, 12)(9, 11)(10, 61)(13, 40)(15, 60)(17, 32)(18, 41)(19, 30)(20, 38)(21, 102)(22, 37)(23, 56)(24, 33)(25, 98)(26, 53)(28, 36)(31, 79)(34, 69)(35, 39)(42, 67)(43, 64)(44, 78)(45, 65)(46, 77)(47, 90)(48, 68)(49, 121)(50, 88)(51, 75)(52, 74)(54, 96)(55, 97)(57, 66)(58, 94)(59, 76)(62, 71)(70, 100)(72, 73)(80, 99)(81, 112)(82, 101)(83, 111)(84, 114)(85, 113)(86, 110)(87, 109)(89, 116)(91, 115)(92, 120)(93, 95)(103, 108)(104, 107)(105, 106)(117, 124)(118, 126)(119, 125)(122, 123)(127, 251)(128, 147)(129, 170)(130, 247)(131, 250)(132, 174)(134, 207)(135, 173)(136, 178)(137, 179)(138, 168)(139, 141)(140, 176)(142, 177)(143, 169)(144, 208)(145, 160)(146, 165)(148, 171)(149, 152)(150, 164)(151, 166)(153, 220)(154, 205)(155, 158)(156, 180)(157, 206)(159, 162)(161, 175)(163, 172)(167, 219)(181, 233)(182, 209)(183, 239)(184, 186)(185, 226)(187, 222)(188, 241)(189, 244)(190, 194)(191, 230)(192, 234)(193, 196)(195, 228)(197, 245)(198, 199)(200, 215)(201, 214)(202, 213)(203, 237)(204, 240)(210, 227)(211, 238)(216, 236)(217, 249)(218, 248)(221, 252)(223, 242)(224, 232)(225, 243)(229, 246)(231, 235)
d: (1, 3, 7, 18, 42, 17, 39, 60, 14, 34, 70, 100, 69, 6, 15, 35, 32, 67, 41, 63, 29)(2, 5, 13, 31, 65, 30, 62, 97, 33, 68, 99, 121, 102, 12, 28, 59, 66, 101, 64, 98, 61)(4, 10, 25, 43, 82, 57, 76, 36, 8, 21, 49, 80, 48, 24, 55, 71, 19, 45, 79, 40, 16)(9, 23, 54, 81, 115, 94, 107, 72, 20, 47, 89, 113, 88, 53, 93, 103, 44, 84, 111, 77, 37)(11, 22, 46, 83, 114, 78, 108, 95, 26, 50, 85, 116, 90, 38, 73, 104, 58, 91, 112, 96, 56)(27, 51, 86, 117, 125, 109, 123, 106, 52, 92, 118, 126, 120, 74, 105, 122, 87, 119, 124, 110, 75)(127, 140, 157, 134, 148, 143, 156, 137, 132, 138, 131, 130, 135, 129, 136, 142, 161, 163, 144, 154, 219)(128, 146, 159, 152, 141, 158, 220, 153, 155, 139, 149, 162, 165, 147, 150, 166, 145, 133, 160, 151, 164)(167, 205, 208, 172, 175, 177, 178, 170, 173, 247, 250, 168, 174, 179, 180, 169, 171, 207, 206, 176, 251)(181, 243, 246, 242, 252, 241, 245, 244, 182, 186, 196, 239, 235, 236, 249, 248, 238, 237, 240, 198, 185)(183, 193, 184, 209, 189, 197, 188, 221, 223, 229, 225, 233, 226, 199, 204, 203, 211, 218, 217, 216, 231)(187, 210, 191, 195, 192, 232, 215, 214, 213, 212, 202, 201, 200, 224, 234, 228, 230, 227, 222, 190, 194)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 252, 22 ]
252
-1 198 199 127 251
-2 220 199 224 127
-3 167 204 140 185
-4 198 232 251 153
-5 234 204 140 153
-6 129 239 174 197
-7 157 181 203 205
-8 166 245 224 170
-9 220 167 224 239
-10 155 167 215 185
-11 232 183 153 219
-12 232 129 151 197
-13 155 157 203 228
-14 132 245 170 183
-15 188 179 136 235
-16 176 220 192 240
-17 143 242 217 175
-18 243 134 211 208
-19 187 169 159 249
-20 187 198 150 173
-21 145 244 234 173
-22 155 127 193 215
-23 234 235 205 153
-24 222 239 174 164
-25 181 214 139 205
-26 166 223 224 137
-27 167 183 239 219
-28 188 136 215 164
-29 176 226 240 219
-30 143 222 162 217
-31 134 211 139 230
-32 223 169 161 249
-33 132 187 150 183
-34 244 138 193 173
-35 221 180 236 142
-36 178 200 150 241
-37 200 158 196 251
-38 199 222 135 164
-39 177 156 216 252
-40 158 237 195 206
-41 144 225 238 207
-42 246 148 172 218
-43 243 213 149 208
-44 146 245 213 171
-45 210 171 248 152
-46 214 139 140 184
-47 166 210 247 185
-48 168 227 151 196
-49 133 247 182 228
-50 132 145 234 229
-51 235 127 193 205
-52 198 223 137 173
-53 242 232 179 151
-54 155 236 228 208
-55 179 190 235 128
-56 154 220 231 192
-57 165 242 202 175
-58 187 211 159 142
-59 221 214 128 142
-60 231 178 137 241
-61 200 158 226 219
-62 165 156 190 216
-63 154 233 237 206
-64 144 202 225 152
-65 148 149 227 218
-66 146 223 213 161
-67 171 248 163 229
-68 166 210 138 193
-69 189 135 168 196
-70 247 182 184 131
-71 146 180 236 194
-72 147 170 194 240
-73 190 204 128 129
-74 242 199 135 179
-75 154 231 196 251
-76 177 201 147 252
-77 176 201 141 186
-78 165 202 148 197
-79 191 238 141 207
-80 160 250 186 230
-81 139 172 249 230
-82 212 246 172 162
-83 209 157 213 149
-84 244 212 159 207
-85 133 225 138 228
-86 236 140 184 208
-87 211 245 171 142
-88 246 192 160 174
-89 145 191 181 250
-90 226 227 151 130
-91 210 161 152 218
-92 132 247 185 229
-93 180 215 164 252
-94 177 222 238 162
-95 221 156 200 150
-96 144 158 216 195
-97 231 147 137 194
-98 154 233 201 141
-99 145 191 184 131
-100 209 250 130 186
-101 212 159 163 229
-102 189 135 192 160
-103 169 214 128 241
-104 146 136 203 194
-105 180 204 129 252
-106 221 156 170 240
-107 165 178 190 237
-108 143 188 201 147
-109 177 148 238 197
-110 176 144 216 186
-111 202 182 206 152
-112 191 217 141 163
-113 133 243 168 195
-114 134 189 212 162
-115 149 248 227 175
-116 233 160 131 230
-117 209 157 172 249
-118 181 225 138 250
-119 244 161 207 218
-120 246 226 130 174
-121 209 133 195 130
-122 136 169 203 241
-123 143 188 178 237
-124 182 206 217 163
-125 134 189 248 175
-126 243 233 168 131
-127 22 1 2 51
-128 55 59 103 73
-129 12 6 105 73
-130 121 100 90 120
-131 99 70 126 116
-132 33 14 92 50
-133 121 113 49 85
-134 114 125 18 31
-135 69 102 38 74
-136 122 15 104 28
-137 26 60 52 97
-138 34 68 85 118
-139 46 25 81 31
-140 46 3 5 86
-141 77 79 112 98
-142 35 58 59 87
-143 123 17 30 108
-144 110 41 96 64
-145 99 89 50 21
-146 44 66 71 104
-147 72 97 108 76
-148 78 42 65 109
-149 115 83 43 65
-150 33 36 95 20
-151 12 90 48 53
-152 45 111 91 64
-153 11 23 4 5
-154 56 63 75 98
-155 22 13 10 54
-156 39 62 95 106
-157 13 83 7 117
-158 37 61 40 96
-159 101 58 84 19
-160 88 80 102 116
-161 66 91 119 32
-162 114 82 94 30
-163 67 101 112 124
-164 24 38 93 28
-165 78 57 62 107
-166 68 47 26 8
-167 3 27 9 10
-168 69 113 48 126
-169 122 103 19 32
-170 14 72 106 8
-171 44 45 67 87
-172 81 82 117 42
-173 34 52 20 21
-174 88 24 6 120
-175 57 125 115 17
-176 77 110 16 29
-177 39 94 76 109
-178 123 36 60 107
-179 55 15 74 53
-180 35 71 93 105
-181 89 25 7 118
-182 111 124 70 49
-183 11 33 14 27
-184 99 46 70 86
-185 3 47 92 10
-186 77 110 100 80
-187 33 58 19 20
-188 123 15 28 108
-189 69 102 114 125
-190 55 62 73 107
-191 99 89 79 112
-192 88 56 102 16
-193 22 34 68 51
-194 71 104 72 97
-195 121 113 40 96
-196 69 37 48 75
-197 12 78 6 109
-198 1 4 52 20
-199 1 2 38 74
-200 36 37 61 95
-201 77 108 76 98
-202 78 111 57 64
-203 122 13 104 7
-204 3 5 105 73
-205 23 25 7 51
-206 111 124 40 63
-207 79 84 41 119
-208 18 86 43 54
-209 121 100 83 117
-210 45 68 47 91
-211 58 18 31 87
-212 101 114 82 84
-213 44 66 83 43
-214 46 25 59 103
-215 22 93 28 10
-216 110 39 62 96
-217 112 124 17 30
-218 91 42 119 65
-219 11 27 61 29
-220 56 2 16 9
-221 35 59 95 106
-222 24 38 94 30
-223 66 26 52 32
-224 2 26 8 9
-225 41 85 118 64
-226 90 61 29 120
-227 90 48 115 65
-228 13 49 85 54
-229 67 101 92 50
-230 80 81 116 31
-231 56 60 75 97
-232 11 12 4 53
-233 126 116 63 98
-234 23 5 50 21
-235 55 23 15 51
-236 35 71 86 54
-237 123 40 63 107
-238 79 94 41 109
-239 24 27 6 9
-240 16 72 29 106
-241 122 36 103 60
-242 57 17 74 53
-243 113 126 18 43
-244 34 84 119 21
-245 44 14 8 87
-246 88 82 42 120
-247 47 70 92 49
-248 45 67 125 115
-249 81 117 19 32
-250 89 100 80 118
-251 1 4 37 75
-252 93 39 105 76
0

**************