[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 252, 23 ] =
Pr_84(1,61,65,41).
(I) Following is a form readable by MAGMA:
g:=Graph<252|{ {2, 3}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72,
73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56,
57}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19},
{20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35},
{36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51},
{52, 53}, {54, 55}, {1, 2}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66},
{61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26},
{29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {3, 4},
{83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36},
{43, 44}, {51, 52}, {7, 8}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {64, 87},
{72, 95}, {65, 88}, {71, 94}, {69, 92}, {67, 90}, {66, 89}, {70, 93}, {15, 16},
{79, 80}, {68, 91}, {47, 48}, {73, 96}, {210, 251}, {208, 249}, {198, 239},
{196, 237}, {79, 102}, {77, 100}, {75, 98}, {192, 233}, {194, 235}, {74, 97},
{209, 250}, {208, 251}, {197, 238}, {196, 239}, {78, 101}, {192, 235}, {193,
234}, {193, 236}, {209, 252}, {195, 238}, {76, 99}, {211, 252}, {194, 237},
{195, 236}, {197, 240}, {207, 250}, {205, 248}, {199, 242}, {80, 103}, {207,
248}, {206, 249}, {199, 240}, {198, 241}, {81, 104}, {206, 247}, {204, 245},
{202, 243}, {200, 241}, {83, 106}, {82, 105}, {205, 246}, {204, 247}, {201,
242}, {200, 243}, {201, 244}, {203, 246}, {31, 32}, {203, 244}, {202, 245}, {84,
107}, {128, 193}, {130, 195}, {132, 197}, {134, 199}, {136, 201}, {138, 203},
{140, 205}, {142, 207}, {144, 209}, {146, 211}, {148, 213}, {150, 215}, {152,
217}, {154, 219}, {156, 221}, {158, 223}, {160, 225}, {162, 227}, {164, 229},
{166, 231}, {168, 233}, {129, 194}, {133, 198}, {137, 202}, {141, 206}, {145,
210}, {149, 214}, {153, 218}, {157, 222}, {161, 226}, {165, 230}, {131, 196},
{139, 204}, {147, 212}, {155, 220}, {163, 228}, {135, 200}, {151, 216}, {167,
232}, {1, 85}, {2, 86}, {3, 87}, {8, 92}, {9, 93}, {10, 94}, {11, 95}, {32,
116}, {33, 117}, {34, 118}, {35, 119}, {40, 124}, {41, 125}, {42, 126}, {43,
127}, {128, 212}, {129, 213}, {130, 214}, {131, 215}, {136, 220}, {137, 221},
{138, 222}, {139, 223}, {160, 244}, {161, 245}, {162, 246}, {163, 247}, {168,
252}, {1, 84}, {181, 224}, {183, 226}, {189, 232}, {191, 234}, {182, 225}, {183,
224}, {190, 233}, {191, 232}, {184, 225}, {186, 227}, {188, 229}, {190, 231},
{184, 227}, {185, 226}, {188, 231}, {189, 230}, {4, 88}, {5, 89}, {6, 90}, {7,
91}, {36, 120}, {37, 121}, {38, 122}, {39, 123}, {132, 216}, {133, 217}, {134,
218}, {135, 219}, {164, 248}, {165, 249}, {166, 250}, {167, 251}, {185, 228},
{187, 230}, {143, 208}, {186, 229}, {187, 228}, {63, 86}, {176, 217}, {178,
219}, {180, 221}, {182, 223}, {4, 111}, {62, 85}, {16, 123}, {20, 127}, {176,
219}, {177, 218}, {180, 223}, {181, 222}, {12, 96}, {13, 97}, {14, 98}, {15,
99}, {28, 112}, {29, 113}, {30, 114}, {31, 115}, {140, 224}, {141, 225}, {142,
226}, {143, 227}, {156, 240}, {157, 241}, {158, 242}, {159, 243}, {1, 108}, {3,
110}, {17, 124}, {19, 126}, {177, 220}, {179, 222}, {2, 109}, {18, 125}, {178,
221}, {179, 220}, {16, 100}, {17, 101}, {18, 102}, {19, 103}, {24, 108}, {25,
109}, {26, 110}, {27, 111}, {144, 228}, {145, 229}, {146, 230}, {147, 231},
{152, 236}, {153, 237}, {154, 238}, {155, 239}, {5, 112}, {7, 114}, {13, 120},
{15, 122}, {173, 216}, {175, 218}, {6, 113}, {14, 121}, {174, 217}, {175, 216},
{170, 211}, {172, 213}, {174, 215}, {8, 115}, {12, 119}, {169, 210}, {172, 215},
{173, 214}, {20, 104}, {21, 105}, {22, 106}, {23, 107}, {148, 232}, {149, 233},
{150, 234}, {151, 235}, {9, 116}, {11, 118}, {169, 212}, {171, 214}, {10, 117},
{63, 64}, {159, 224}, {170, 213}, {171, 212}, {21, 128}, {98, 247}, {96, 245},
{61, 168}, {23, 130}, {29, 136}, {31, 138}, {53, 160}, {55, 162}, {22, 129},
{97, 246}, {30, 137}, {54, 161}, {24, 131}, {60, 167}, {56, 163}, {28, 135},
{99, 248}, {103, 252}, {25, 132}, {59, 166}, {57, 164}, {27, 134}, {100, 249},
{102, 251}, {26, 133}, {58, 165}, {101, 250}, {32, 139}, {95, 244}, {91, 240},
{36, 143}, {48, 155}, {52, 159}, {44, 128}, {63, 147}, {62, 146}, {61, 145},
{60, 144}, {45, 129}, {46, 130}, {47, 131}, {108, 192}, {109, 193}, {110, 194},
{111, 195}, {124, 208}, {125, 209}, {126, 210}, {127, 211}, {33, 140}, {94,
243}, {92, 241}, {35, 142}, {49, 156}, {51, 158}, {34, 141}, {93, 242}, {50,
157}, {48, 132}, {59, 143}, {58, 142}, {57, 141}, {56, 140}, {49, 133}, {50,
134}, {51, 135}, {112, 196}, {113, 197}, {114, 198}, {115, 199}, {120, 204},
{121, 205}, {122, 206}, {123, 207}, {37, 144}, {90, 239}, {88, 237}, {39, 146},
{45, 152}, {47, 154}, {38, 145}, {89, 238}, {46, 153}, {40, 147}, {87, 236},
{44, 151}, {52, 136}, {53, 137}, {54, 138}, {55, 139}, {116, 200}, {117, 201},
{118, 202}, {119, 203}, {41, 148}, {86, 235}, {43, 150}, {42, 149}, {85, 234},
{127, 192}, {104, 169}, {106, 171}, {108, 173}, {110, 175}, {112, 177}, {114,
179}, {116, 181}, {118, 183}, {120, 185}, {122, 187}, {124, 189}, {126, 191},
{105, 170}, {109, 174}, {113, 178}, {117, 182}, {121, 186}, {125, 190}, {107,
172}, {115, 180}, {123, 188}, {119, 184}, {64, 148}, {99, 183}, {98, 182}, {97,
181}, {96, 180}, {75, 159}, {74, 158}, {73, 157}, {72, 156}, {67, 151}, {66,
150}, {65, 149}, {104, 188}, {105, 189}, {106, 190}, {107, 191}, {68, 152}, {71,
155}, {70, 154}, {69, 153}, {100, 184}, {101, 185}, {102, 186}, {103, 187},
{111, 176}, {76, 160}, {95, 179}, {94, 178}, {93, 177}, {92, 176}, {79, 163},
{78, 162}, {77, 161}, {80, 164}, {91, 175}, {90, 174}, {89, 173}, {88, 172},
{83, 167}, {82, 166}, {81, 165}, {84, 168}, {87, 171}, {86, 170}, {85, 169}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 84)(3, 83)(4, 82)(5, 81)(6, 80)(7, 79)(8, 78)(9, 77)(10, 76)(11, 75)(12,
74)(13, 73)(14, 72)(15, 71)(16, 70)(17, 69)(18, 68)(19, 67)(20, 66)(21, 65)(22,
64)(23, 63)(24, 62)(25, 61)(26, 60)(27, 59)(28, 58)(29, 57)(30, 56)(31, 55)(32,
54)(33, 53)(34, 52)(35, 51)(36, 50)(37, 49)(38, 48)(39, 47)(40, 46)(41, 45)(42,
44)(85, 108)(86, 107)(87, 106)(88, 105)(89, 104)(90, 103)(91, 102)(92, 101)(93,
100)(94, 99)(95, 98)(96, 97)(109, 168)(110, 167)(111, 166)(112, 165)(113,
164)(114, 163)(115, 162)(116, 161)(117, 160)(118, 159)(119, 158)(120, 157)(121,
156)(122, 155)(123, 154)(124, 153)(125, 152)(126, 151)(127, 150)(128, 149)(129,
148)(130, 147)(131, 146)(132, 145)(133, 144)(134, 143)(135, 142)(136, 141)(137,
140)(138, 139)(169, 173)(170, 172)(174, 252)(175, 251)(176, 250)(177, 249)(178,
248)(179, 247)(180, 246)(181, 245)(182, 244)(183, 243)(184, 242)(185, 241)(186,
240)(187, 239)(188, 238)(189, 237)(190, 236)(191, 235)(192, 234)(193, 233)(194,
232)(195, 231)(196, 230)(197, 229)(198, 228)(199, 227)(200, 226)(201, 225)(202,
224)(203, 223)(204, 222)(205, 221)(206, 220)(207, 219)(208, 218)(209, 217)(210,
216)(211, 215)(212, 214) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 108)(3, 173)(4, 89)(6, 112)(7, 177)(8, 93)(10, 116)(11, 181)(12, 97)(14,
120)(15, 185)(16, 101)(18, 124)(19, 189)(20, 105)(22, 128)(23, 193)(24, 109)(26,
132)(27, 197)(28, 113)(30, 136)(31, 201)(32, 117)(34, 140)(35, 205)(36, 121)(38,
144)(39, 209)(40, 125)(42, 148)(43, 213)(44, 129)(46, 152)(47, 217)(48, 133)(50,
156)(51, 221)(52, 137)(54, 160)(55, 225)(56, 141)(58, 164)(59, 229)(60, 145)(62,
168)(63, 233)(64, 149)(66, 88)(67, 237)(68, 153)(70, 92)(71, 241)(72, 157)(74,
96)(75, 245)(76, 161)(78, 100)(79, 249)(80, 165)(82, 104)(83, 169)(84, 85)(86,
192)(87, 214)(90, 196)(91, 218)(94, 200)(95, 222)(98, 204)(99, 226)(102,
208)(103, 230)(106, 212)(107, 234)(110, 216)(111, 238)(114, 220)(115, 242)(118,
224)(119, 246)(122, 228)(123, 250)(126, 232)(127, 170)(130, 236)(131, 174)(134,
240)(135, 178)(138, 244)(139, 182)(142, 248)(143, 186)(146, 252)(147, 190)(150,
172)(151, 194)(154, 176)(155, 198)(158, 180)(159, 202)(162, 184)(163, 206)(166,
188)(167, 210)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84)(85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168)(169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252)
C4[ 252, 23 ]
252
-1 2 84 85 108
-2 1 3 86 109
-3 110 2 4 87
-4 88 111 3 5
-5 89 112 4 6
-6 90 113 5 7
-7 91 114 6 8
-8 92 115 7 9
-9 93 116 8 10
-10 11 94 117 9
-11 12 95 118 10
-12 11 13 96 119
-13 12 14 97 120
-14 121 13 15 98
-15 99 122 14 16
-16 100 123 15 17
-17 101 124 16 18
-18 102 125 17 19
-19 103 126 18 20
-20 104 127 19 21
-21 22 105 128 20
-22 23 106 129 21
-23 22 24 107 130
-24 23 25 108 131
-25 132 24 26 109
-26 110 133 25 27
-27 111 134 26 28
-28 112 135 27 29
-29 113 136 28 30
-30 114 137 29 31
-31 115 138 30 32
-32 33 116 139 31
-33 34 117 140 32
-34 33 35 118 141
-35 34 36 119 142
-36 143 35 37 120
-37 121 144 36 38
-38 122 145 37 39
-39 123 146 38 40
-40 124 147 39 41
-41 125 148 40 42
-42 126 149 41 43
-43 44 127 150 42
-44 45 128 151 43
-45 44 46 129 152
-46 45 47 130 153
-47 154 46 48 131
-48 132 155 47 49
-49 133 156 48 50
-50 134 157 49 51
-51 135 158 50 52
-52 136 159 51 53
-53 137 160 52 54
-54 55 138 161 53
-55 56 139 162 54
-56 55 57 140 163
-57 56 58 141 164
-58 165 57 59 142
-59 143 166 58 60
-60 144 167 59 61
-61 145 168 60 62
-62 146 61 63 85
-63 147 62 64 86
-64 148 63 65 87
-65 66 88 149 64
-66 67 89 150 65
-67 66 68 90 151
-68 67 69 91 152
-69 68 70 92 153
-70 154 69 71 93
-71 155 70 72 94
-72 156 71 73 95
-73 157 72 74 96
-74 158 73 75 97
-75 159 74 76 98
-76 77 99 160 75
-77 78 100 161 76
-78 77 79 101 162
-79 78 80 102 163
-80 79 81 103 164
-81 165 80 82 104
-82 166 81 83 105
-83 167 82 84 106
-84 1 168 83 107
-85 1 234 169 62
-86 2 235 170 63
-87 3 236 171 64
-88 4 237 172 65
-89 66 5 238 173
-90 67 6 239 174
-91 68 7 240 175
-92 176 69 8 241
-93 242 177 70 9
-94 243 178 71 10
-95 11 244 179 72
-96 12 245 180 73
-97 13 246 181 74
-98 14 247 182 75
-99 15 248 183 76
-100 77 16 249 184
-101 78 17 250 185
-102 79 18 251 186
-103 187 80 19 252
-104 188 81 169 20
-105 189 82 170 21
-106 22 190 83 171
-107 23 191 84 172
-108 1 24 192 173
-109 2 25 193 174
-110 3 26 194 175
-111 176 4 27 195
-112 177 5 28 196
-113 178 6 29 197
-114 198 179 7 30
-115 199 180 8 31
-116 200 181 9 32
-117 33 201 182 10
-118 11 34 202 183
-119 12 35 203 184
-120 13 36 204 185
-121 14 37 205 186
-122 187 15 38 206
-123 188 16 39 207
-124 189 17 40 208
-125 209 190 18 41
-126 210 191 19 42
-127 211 192 20 43
-128 44 212 193 21
-129 22 45 213 194
-130 23 46 214 195
-131 24 47 215 196
-132 25 48 216 197
-133 198 26 49 217
-134 199 27 50 218
-135 200 28 51 219
-136 220 201 29 52
-137 221 202 30 53
-138 222 203 31 54
-139 55 223 204 32
-140 33 56 224 205
-141 34 57 225 206
-142 35 58 226 207
-143 36 59 227 208
-144 209 37 60 228
-145 210 38 61 229
-146 211 39 62 230
-147 231 212 40 63
-148 232 213 41 64
-149 233 214 42 65
-150 66 234 215 43
-151 44 67 235 216
-152 45 68 236 217
-153 46 69 237 218
-154 47 70 238 219
-155 220 48 71 239
-156 221 49 72 240
-157 222 50 73 241
-158 242 223 51 74
-159 243 224 52 75
-160 244 225 53 76
-161 77 245 226 54
-162 55 78 246 227
-163 56 79 247 228
-164 57 80 248 229
-165 58 81 249 230
-166 231 59 82 250
-167 232 60 83 251
-168 233 61 84 252
-169 210 212 104 85
-170 211 213 105 86
-171 212 214 106 87
-172 88 213 215 107
-173 89 214 216 108
-174 90 215 217 109
-175 110 91 216 218
-176 111 92 217 219
-177 220 112 93 218
-178 221 113 94 219
-179 220 222 114 95
-180 221 223 115 96
-181 222 224 116 97
-182 223 225 117 98
-183 99 224 226 118
-184 100 225 227 119
-185 101 226 228 120
-186 121 102 227 229
-187 122 103 228 230
-188 231 123 104 229
-189 232 124 105 230
-190 231 233 125 106
-191 232 234 126 107
-192 233 235 127 108
-193 234 236 128 109
-194 110 235 237 129
-195 111 236 238 130
-196 112 237 239 131
-197 132 113 238 240
-198 133 114 239 241
-199 242 134 115 240
-200 243 135 116 241
-201 242 244 136 117
-202 243 245 137 118
-203 244 246 138 119
-204 245 247 139 120
-205 121 246 248 140
-206 122 247 249 141
-207 123 248 250 142
-208 143 124 249 251
-209 144 125 250 252
-210 145 169 126 251
-211 146 170 127 252
-212 147 169 171 128
-213 148 170 172 129
-214 149 171 173 130
-215 150 172 174 131
-216 132 151 173 175
-217 176 133 152 174
-218 177 134 153 175
-219 154 176 178 135
-220 155 177 179 136
-221 156 178 180 137
-222 157 179 181 138
-223 158 180 182 139
-224 159 181 183 140
-225 160 182 184 141
-226 161 183 185 142
-227 143 162 184 186
-228 187 144 163 185
-229 188 145 164 186
-230 165 187 189 146
-231 166 188 190 147
-232 167 189 191 148
-233 168 190 192 149
-234 191 193 150 85
-235 192 194 151 86
-236 193 195 152 87
-237 88 194 196 153
-238 154 89 195 197
-239 198 155 90 196
-240 199 156 91 197
-241 198 200 157 92
-242 199 201 158 93
-243 200 202 159 94
-244 201 203 160 95
-245 202 204 161 96
-246 203 205 162 97
-247 204 206 163 98
-248 99 205 207 164
-249 165 100 206 208
-250 209 166 101 207
-251 210 167 102 208
-252 209 211 168 103
0