C4graphGraph forms for C4 [ 252, 25 ] = KE_63(1,24,7,10,8)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 252, 25 ] = KE_63(1,24,7,10,8).

(I) Following is a form readable by MAGMA:

g:=Graph<252|{ {2, 3}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {1, 2}, {61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {3, 4}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {120, 127}, {192, 200}, {244, 252}, {243, 251}, {242, 250}, {241, 249}, {240, 248}, {231, 239}, {230, 238}, {229, 237}, {228, 236}, {227, 235}, {226, 234}, {225, 233}, {224, 232}, {215, 223}, {214, 222}, {213, 221}, {212, 220}, {211, 219}, {193, 201}, {194, 202}, {195, 203}, {196, 204}, {197, 205}, {198, 206}, {199, 207}, {208, 216}, {209, 217}, {210, 218}, {7, 8}, {55, 56}, {23, 24}, {39, 40}, {200, 208}, {239, 247}, {238, 246}, {237, 245}, {236, 244}, {235, 243}, {234, 242}, {233, 241}, {232, 240}, {201, 209}, {202, 210}, {203, 211}, {204, 212}, {205, 213}, {206, 214}, {207, 215}, {15, 16}, {47, 48}, {192, 247}, {216, 224}, {223, 231}, {222, 230}, {221, 229}, {220, 228}, {219, 227}, {218, 226}, {217, 225}, {193, 248}, {195, 250}, {197, 252}, {194, 249}, {1, 63}, {31, 32}, {64, 127}, {128, 191}, {196, 251}, {129, 192}, {131, 194}, {133, 196}, {135, 198}, {137, 200}, {139, 202}, {141, 204}, {143, 206}, {145, 208}, {147, 210}, {149, 212}, {151, 214}, {153, 216}, {155, 218}, {157, 220}, {159, 222}, {161, 224}, {163, 226}, {165, 228}, {167, 230}, {169, 232}, {171, 234}, {173, 236}, {175, 238}, {177, 240}, {179, 242}, {181, 244}, {183, 246}, {185, 248}, {187, 250}, {189, 252}, {130, 193}, {134, 197}, {138, 201}, {142, 205}, {146, 209}, {150, 213}, {154, 217}, {158, 221}, {162, 225}, {166, 229}, {170, 233}, {174, 237}, {178, 241}, {182, 245}, {186, 249}, {132, 195}, {140, 203}, {148, 211}, {156, 219}, {164, 227}, {172, 235}, {180, 243}, {188, 251}, {191, 246}, {190, 245}, {136, 199}, {152, 215}, {168, 231}, {184, 247}, {25, 64}, {63, 102}, {61, 100}, {59, 98}, {57, 96}, {27, 66}, {29, 68}, {31, 70}, {26, 65}, {62, 101}, {58, 97}, {30, 69}, {28, 67}, {60, 99}, {144, 207}, {176, 239}, {1, 103}, {8, 110}, {9, 111}, {16, 118}, {17, 119}, {24, 126}, {32, 71}, {56, 95}, {40, 79}, {48, 87}, {33, 72}, {55, 94}, {53, 92}, {35, 74}, {37, 76}, {39, 78}, {49, 88}, {51, 90}, {2, 104}, {3, 105}, {6, 108}, {7, 109}, {18, 120}, {19, 121}, {22, 124}, {23, 125}, {34, 73}, {54, 93}, {38, 77}, {50, 89}, {4, 106}, {5, 107}, {20, 122}, {21, 123}, {36, 75}, {52, 91}, {190, 198}, {191, 199}, {41, 80}, {43, 82}, {45, 84}, {47, 86}, {10, 112}, {11, 113}, {14, 116}, {15, 117}, {42, 81}, {46, 85}, {1, 127}, {12, 114}, {13, 115}, {44, 83}, {160, 223}, {2, 128}, {63, 189}, {62, 188}, {59, 185}, {58, 184}, {55, 181}, {54, 180}, {3, 129}, {6, 132}, {7, 133}, {10, 136}, {11, 137}, {14, 140}, {15, 141}, {18, 144}, {19, 145}, {22, 148}, {23, 149}, {26, 152}, {27, 153}, {30, 156}, {31, 157}, {34, 160}, {35, 161}, {38, 164}, {39, 165}, {42, 168}, {43, 169}, {46, 172}, {47, 173}, {50, 176}, {51, 177}, {4, 130}, {61, 187}, {60, 186}, {53, 179}, {5, 131}, {12, 138}, {13, 139}, {20, 146}, {21, 147}, {28, 154}, {29, 155}, {36, 162}, {37, 163}, {44, 170}, {45, 171}, {52, 178}, {64, 200}, {87, 223}, {86, 222}, {85, 221}, {84, 220}, {83, 219}, {82, 218}, {81, 217}, {80, 216}, {71, 207}, {70, 206}, {69, 205}, {68, 204}, {67, 203}, {66, 202}, {65, 201}, {96, 232}, {97, 233}, {98, 234}, {99, 235}, {100, 236}, {101, 237}, {102, 238}, {103, 239}, {112, 248}, {113, 249}, {114, 250}, {115, 251}, {116, 252}, {8, 134}, {57, 183}, {56, 182}, {9, 135}, {24, 150}, {25, 151}, {40, 166}, {41, 167}, {72, 208}, {79, 215}, {78, 214}, {77, 213}, {76, 212}, {75, 211}, {74, 210}, {73, 209}, {104, 240}, {105, 241}, {106, 242}, {107, 243}, {108, 244}, {109, 245}, {110, 246}, {111, 247}, {16, 142}, {17, 143}, {48, 174}, {49, 175}, {119, 192}, {88, 224}, {90, 226}, {89, 225}, {91, 227}, {92, 228}, {93, 229}, {94, 230}, {95, 231}, {120, 193}, {122, 195}, {124, 197}, {126, 199}, {121, 194}, {125, 198}, {32, 158}, {33, 159}, {123, 196}, {65, 128}, {91, 154}, {89, 152}, {87, 150}, {85, 148}, {83, 146}, {81, 144}, {79, 142}, {77, 140}, {75, 138}, {73, 136}, {71, 134}, {69, 132}, {67, 130}, {93, 156}, {95, 158}, {97, 160}, {99, 162}, {101, 164}, {103, 166}, {105, 168}, {107, 170}, {109, 172}, {111, 174}, {113, 176}, {115, 178}, {117, 180}, {119, 182}, {121, 184}, {123, 186}, {125, 188}, {127, 190}, {66, 129}, {90, 153}, {86, 149}, {82, 145}, {78, 141}, {74, 137}, {70, 133}, {94, 157}, {98, 161}, {102, 165}, {106, 169}, {110, 173}, {114, 177}, {118, 181}, {122, 185}, {126, 189}, {64, 134}, {89, 159}, {88, 158}, {81, 151}, {80, 150}, {73, 143}, {72, 142}, {65, 135}, {96, 166}, {97, 167}, {104, 174}, {105, 175}, {112, 182}, {113, 183}, {68, 131}, {84, 147}, {76, 139}, {92, 155}, {100, 163}, {108, 171}, {116, 179}, {124, 187}, {118, 191}, {66, 136}, {87, 157}, {86, 156}, {83, 153}, {82, 152}, {71, 141}, {70, 140}, {67, 137}, {98, 168}, {99, 169}, {102, 172}, {103, 173}, {114, 184}, {115, 185}, {118, 188}, {119, 189}, {117, 190}, {68, 138}, {85, 155}, {84, 154}, {69, 139}, {100, 170}, {101, 171}, {116, 186}, {117, 187}, {72, 135}, {88, 151}, {104, 167}, {120, 183}, {74, 144}, {79, 149}, {78, 148}, {75, 145}, {106, 176}, {107, 177}, {110, 180}, {111, 181}, {76, 146}, {77, 147}, {108, 178}, {109, 179}, {80, 143}, {112, 175}, {121, 128}, {123, 130}, {125, 132}, {90, 160}, {91, 161}, {94, 164}, {95, 165}, {122, 129}, {126, 133}, {92, 162}, {93, 163}, {96, 159}, {124, 131} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 127)(3, 64)(4, 25)(5, 151)(6, 88)(7, 49)(8, 175)(9, 112)(11, 136)(12, 73)(13, 34)(14, 160)(15, 97)(16, 58)(17, 184)(18, 121)(20, 145)(21, 82)(22, 43)(23, 169)(24, 106)(26, 130)(27, 67)(29, 154)(30, 91)(31, 52)(32, 178)(33, 115)(35, 139)(36, 76)(38, 163)(39, 100)(40, 61)(41, 187)(42, 124)(44, 148)(45, 85)(47, 172)(48, 109)(50, 133)(51, 70)(53, 157)(54, 94)(56, 181)(57, 118)(59, 142)(60, 79)(62, 166)(63, 103)(65, 193)(66, 137)(68, 217)(69, 161)(71, 241)(72, 185)(74, 202)(75, 146)(77, 226)(78, 170)(80, 250)(81, 131)(83, 211)(84, 155)(86, 235)(87, 179)(89, 196)(90, 140)(92, 220)(93, 164)(95, 244)(96, 188)(98, 205)(99, 149)(101, 229)(102, 173)(104, 190)(105, 134)(107, 214)(108, 158)(110, 238)(111, 182)(113, 199)(114, 143)(116, 223)(117, 167)(119, 247)(120, 128)(122, 208)(123, 152)(125, 232)(126, 176)(129, 200)(132, 224)(135, 248)(138, 209)(141, 233)(144, 194)(147, 218)(150, 242)(153, 203)(156, 227)(159, 251)(162, 212)(165, 236)(168, 197)(171, 221)(174, 245)(177, 206)(180, 230)(183, 191)(186, 215)(189, 239)(195, 216)(198, 240)(204, 225)(207, 249)(213, 234)(222, 243)(231, 252)
b: (2, 63)(3, 62)(4, 61)(5, 60)(6, 59)(7, 58)(8, 57)(9, 56)(10, 55)(11, 54)(12, 53)(13, 52)(14, 51)(15, 50)(16, 49)(17, 48)(18, 47)(19, 46)(20, 45)(21, 44)(22, 43)(23, 42)(24, 41)(25, 40)(26, 39)(27, 38)(28, 37)(29, 36)(30, 35)(31, 34)(32, 33)(64, 166)(65, 165)(66, 164)(67, 163)(68, 162)(69, 161)(70, 160)(71, 159)(72, 158)(73, 157)(74, 156)(75, 155)(76, 154)(77, 153)(78, 152)(79, 151)(80, 150)(81, 149)(82, 148)(83, 147)(84, 146)(85, 145)(86, 144)(87, 143)(88, 142)(89, 141)(90, 140)(91, 139)(92, 138)(93, 137)(94, 136)(95, 135)(96, 134)(97, 133)(98, 132)(99, 131)(100, 130)(101, 129)(102, 128)(103, 127)(104, 189)(105, 188)(106, 187)(107, 186)(108, 185)(109, 184)(110, 183)(111, 182)(112, 181)(113, 180)(114, 179)(115, 178)(116, 177)(117, 176)(118, 175)(119, 174)(120, 173)(121, 172)(122, 171)(123, 170)(124, 169)(125, 168)(126, 167)(190, 239)(191, 238)(192, 237)(193, 236)(194, 235)(195, 234)(196, 233)(197, 232)(198, 231)(199, 230)(200, 229)(201, 228)(202, 227)(203, 226)(204, 225)(205, 224)(206, 223)(207, 222)(208, 221)(209, 220)(210, 219)(211, 218)(212, 217)(213, 216)(214, 215)(240, 252)(241, 251)(242, 250)(243, 249)(244, 248)(245, 247)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63)(64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126)(127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189)(190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 252, 25 ]
252
-1 2 103 127 63
-2 1 3 104 128
-3 2 4 105 129
-4 3 5 106 130
-5 4 6 107 131
-6 132 5 7 108
-7 133 6 8 109
-8 110 134 7 9
-9 111 135 8 10
-10 11 112 136 9
-11 12 113 137 10
-12 11 13 114 138
-13 12 14 115 139
-14 13 15 116 140
-15 14 16 117 141
-16 15 17 118 142
-17 143 16 18 119
-18 144 17 19 120
-19 121 145 18 20
-20 122 146 19 21
-21 22 123 147 20
-22 23 124 148 21
-23 22 24 125 149
-24 23 25 126 150
-25 24 26 151 64
-26 25 27 152 65
-27 66 26 28 153
-28 154 67 27 29
-29 155 68 28 30
-30 156 69 29 31
-31 157 70 30 32
-32 33 158 71 31
-33 34 159 72 32
-34 33 35 160 73
-35 34 36 161 74
-36 35 37 162 75
-37 36 38 163 76
-38 77 37 39 164
-39 165 78 38 40
-40 166 79 39 41
-41 167 80 40 42
-42 168 81 41 43
-43 44 169 82 42
-44 45 170 83 43
-45 44 46 171 84
-46 45 47 172 85
-47 46 48 173 86
-48 47 49 174 87
-49 88 48 50 175
-50 176 89 49 51
-51 177 90 50 52
-52 178 91 51 53
-53 179 92 52 54
-54 55 180 93 53
-55 56 181 94 54
-56 55 57 182 95
-57 56 58 183 96
-58 57 59 184 97
-59 58 60 185 98
-60 99 59 61 186
-61 187 100 60 62
-62 188 101 61 63
-63 1 189 102 62
-64 134 200 25 127
-65 135 201 26 128
-66 136 202 27 129
-67 137 203 28 130
-68 138 204 29 131
-69 132 139 205 30
-70 133 140 206 31
-71 134 141 207 32
-72 33 135 142 208
-73 143 209 34 136
-74 144 210 35 137
-75 145 211 36 138
-76 146 212 37 139
-77 147 213 38 140
-78 148 214 39 141
-79 149 215 40 142
-80 143 150 216 41
-81 144 151 217 42
-82 145 152 218 43
-83 44 146 153 219
-84 154 220 45 147
-85 155 221 46 148
-86 156 222 47 149
-87 157 223 48 150
-88 158 224 49 151
-89 159 225 50 152
-90 160 226 51 153
-91 154 161 227 52
-92 155 162 228 53
-93 156 163 229 54
-94 55 157 164 230
-95 165 231 56 158
-96 166 232 57 159
-97 167 233 58 160
-98 168 234 59 161
-99 169 235 60 162
-100 170 236 61 163
-101 171 237 62 164
-102 165 172 238 63
-103 1 166 173 239
-104 2 167 174 240
-105 3 168 175 241
-106 176 242 4 169
-107 177 243 5 170
-108 178 244 6 171
-109 179 245 7 172
-110 180 246 8 173
-111 181 247 9 174
-112 182 248 10 175
-113 11 176 183 249
-114 12 177 184 250
-115 13 178 185 251
-116 14 179 186 252
-117 187 190 15 180
-118 188 191 16 181
-119 189 192 17 182
-120 127 193 18 183
-121 128 194 19 184
-122 129 195 20 185
-123 130 196 21 186
-124 22 187 131 197
-125 132 198 23 188
-126 133 199 24 189
-127 1 190 64 120
-128 121 2 191 65
-129 66 122 3 192
-130 67 123 4 193
-131 68 124 5 194
-132 69 125 6 195
-133 70 126 7 196
-134 71 8 64 197
-135 198 72 9 65
-136 66 199 73 10
-137 11 67 200 74
-138 12 68 201 75
-139 13 69 202 76
-140 77 14 70 203
-141 78 15 71 204
-142 79 16 72 205
-143 80 17 73 206
-144 81 18 74 207
-145 82 19 75 208
-146 209 83 20 76
-147 77 210 84 21
-148 22 78 211 85
-149 23 79 212 86
-150 24 80 213 87
-151 88 25 81 214
-152 89 26 82 215
-153 90 27 83 216
-154 91 28 84 217
-155 92 29 85 218
-156 93 30 86 219
-157 220 94 31 87
-158 88 221 95 32
-159 33 89 222 96
-160 34 90 223 97
-161 35 91 224 98
-162 99 36 92 225
-163 100 37 93 226
-164 101 38 94 227
-165 102 39 95 228
-166 103 40 96 229
-167 104 41 97 230
-168 231 105 42 98
-169 99 232 106 43
-170 44 100 233 107
-171 45 101 234 108
-172 46 102 235 109
-173 110 47 103 236
-174 111 48 104 237
-175 112 49 105 238
-176 113 50 106 239
-177 114 51 107 240
-178 115 52 108 241
-179 242 116 53 109
-180 110 243 117 54
-181 55 111 244 118
-182 56 112 245 119
-183 57 113 246 120
-184 121 58 114 247
-185 122 59 115 248
-186 123 60 116 249
-187 124 61 117 250
-188 125 62 118 251
-189 126 63 119 252
-190 198 245 127 117
-191 199 246 128 118
-192 200 247 129 119
-193 201 248 130 120
-194 121 202 249 131
-195 132 122 203 250
-196 133 123 204 251
-197 134 124 205 252
-198 135 190 125 206
-199 136 191 126 207
-200 137 192 64 208
-201 209 138 193 65
-202 66 210 139 194
-203 67 211 140 195
-204 68 212 141 196
-205 69 213 142 197
-206 143 198 70 214
-207 144 199 71 215
-208 145 200 72 216
-209 146 201 73 217
-210 147 202 74 218
-211 148 203 75 219
-212 220 149 204 76
-213 77 221 150 205
-214 78 222 151 206
-215 79 223 152 207
-216 80 224 153 208
-217 154 209 81 225
-218 155 210 82 226
-219 156 211 83 227
-220 157 212 84 228
-221 158 213 85 229
-222 159 214 86 230
-223 231 160 215 87
-224 88 232 161 216
-225 89 233 162 217
-226 90 234 163 218
-227 91 235 164 219
-228 165 220 92 236
-229 166 221 93 237
-230 167 222 94 238
-231 168 223 95 239
-232 169 224 96 240
-233 170 225 97 241
-234 242 171 226 98
-235 99 243 172 227
-236 100 244 173 228
-237 101 245 174 229
-238 102 246 175 230
-239 176 231 103 247
-240 177 232 104 248
-241 178 233 105 249
-242 179 234 106 250
-243 180 235 107 251
-244 181 236 108 252
-245 190 182 237 109
-246 110 191 183 238
-247 111 192 184 239
-248 112 193 185 240
-249 113 194 186 241
-250 187 242 114 195
-251 188 243 115 196
-252 189 244 116 197
0

**************