C4graphGraph forms for C4 [ 252, 29 ] = UG(ATD[252,5])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 252, 29 ] = UG(ATD[252,5]).

(I) Following is a form readable by MAGMA:

g:=Graph<252|{ {34, 35}, {240, 241}, {84, 85}, {158, 159}, {173, 175}, {1, 2}, {249, 250}, {145, 146}, {1, 5}, {3, 7}, {2, 6}, {153, 157}, {26, 31}, {129, 135}, {219, 221}, {1, 6}, {70, 78}, {226, 234}, {192, 201}, {215, 222}, {22, 28}, {230, 236}, {162, 168}, {161, 170}, {193, 202}, {2, 14}, {4, 8}, {3, 15}, {146, 159}, {183, 186}, {86, 88}, {197, 203}, {97, 111}, {145, 159}, {180, 187}, {225, 238}, {224, 239}, {1, 17}, {201, 217}, {3, 18}, {231, 246}, {11, 25}, {229, 247}, {103, 117}, {110, 124}, {128, 146}, {132, 150}, {133, 151}, {72, 91}, {4, 16}, {76, 88}, {5, 17}, {7, 18}, {193, 212}, {13, 24}, {136, 158}, {4, 19}, {235, 252}, {11, 28}, {226, 250}, {74, 83}, {192, 217}, {132, 157}, {75, 81}, {235, 241}, {77, 87}, {76, 86}, {106, 112}, {8, 19}, {235, 240}, {36, 63}, {12, 23}, {32, 60}, {34, 62}, {33, 61}, {9, 20}, {230, 251}, {35, 62}, {11, 22}, {132, 153}, {71, 89}, {202, 212}, {10, 21}, {71, 88}, {67, 92}, {143, 144}, {21, 52}, {12, 46}, {23, 53}, {16, 50}, {13, 47}, {8, 43}, {28, 56}, {216, 252}, {31, 59}, {30, 58}, {29, 57}, {9, 44}, {81, 116}, {11, 45}, {20, 51}, {211, 244}, {73, 110}, {138, 162}, {10, 32}, {149, 191}, {5, 40}, {26, 55}, {7, 42}, {142, 163}, {24, 54}, {213, 251}, {69, 107}, {68, 106}, {137, 167}, {6, 41}, {145, 190}, {152, 168}, {151, 166}, {2, 48}, {3, 49}, {138, 185}, {213, 230}, {25, 45}, {73, 124}, {75, 126}, {155, 174}, {4, 50}, {10, 60}, {74, 125}, {223, 232}, {130, 181}, {64, 120}, {194, 250}, {66, 122}, {65, 121}, {133, 189}, {12, 53}, {78, 119}, {156, 165}, {9, 51}, {30, 36}, {147, 169}, {152, 162}, {154, 160}, {13, 54}, {194, 249}, {27, 38}, {220, 225}, {204, 241}, {70, 123}, {10, 52}, {218, 228}, {15, 49}, {14, 48}, {136, 182}, {141, 178}, {155, 164}, {61, 125}, {151, 215}, {152, 216}, {155, 218}, {184, 249}, {169, 232}, {157, 220}, {148, 214}, {154, 217}, {145, 213}, {40, 110}, {41, 111}, {168, 238}, {138, 205}, {170, 237}, {167, 224}, {63, 119}, {34, 107}, {171, 226}, {141, 199}, {189, 247}, {188, 246}, {185, 243}, {169, 227}, {33, 106}, {56, 115}, {38, 109}, {27, 87}, {180, 248}, {171, 231}, {16, 93}, {182, 251}, {59, 118}, {57, 116}, {30, 80}, {128, 206}, {129, 207}, {158, 208}, {35, 108}, {58, 117}, {143, 192}, {159, 208}, {14, 94}, {47, 127}, {15, 95}, {129, 209}, {149, 196}, {171, 250}, {26, 72}, {182, 228}, {29, 79}, {9, 90}, {36, 119}, {150, 197}, {52, 96}, {161, 244}, {27, 77}, {179, 229}, {135, 209}, {135, 208}, {186, 237}, {175, 248}, {137, 209}, {189, 229}, {178, 234}, {139, 210}, {184, 225}, {181, 236}, {141, 212}, {41, 115}, {43, 113}, {42, 112}, {153, 194}, {174, 245}, {46, 114}, {13, 80}, {39, 122}, {37, 120}, {150, 203}, {172, 242}, {38, 121}, {183, 232}, {140, 211}, {39, 71}, {134, 231}, {37, 71}, {176, 210}, {32, 67}, {128, 227}, {179, 215}, {184, 220}, {33, 68}, {39, 66}, {37, 64}, {140, 233}, {34, 69}, {188, 219}, {38, 65}, {33, 73}, {6, 111}, {31, 118}, {29, 116}, {137, 224}, {5, 110}, {190, 213}, {30, 117}, {179, 222}, {130, 236}, {28, 115}, {156, 243}, {134, 246}, {147, 227}, {17, 96}, {25, 104}, {23, 102}, {21, 100}, {19, 98}, {146, 227}, {166, 215}, {18, 97}, {26, 105}, {22, 101}, {136, 251}, {36, 80}, {187, 207}, {186, 206}, {185, 205}, {174, 218}, {61, 73}, {178, 199}, {27, 109}, {181, 195}, {44, 90}, {31, 105}, {131, 245}, {169, 223}, {7, 112}, {177, 198}, {170, 221}, {61, 74}, {20, 99}, {8, 113}, {183, 206}, {177, 200}, {175, 214}, {164, 222}, {165, 223}, {173, 214}, {191, 196}, {32, 92}, {139, 247}, {161, 221}, {37, 88}, {12, 114}, {39, 89}, {142, 240}, {24, 103}, {55, 72}, {47, 80}, {144, 239}, {107, 235}, {20, 149}, {49, 176}, {113, 240}, {45, 175}, {77, 207}, {76, 206}, {51, 177}, {112, 242}, {126, 252}, {40, 172}, {55, 179}, {41, 173}, {43, 174}, {46, 171}, {101, 224}, {105, 236}, {62, 184}, {95, 217}, {86, 208}, {63, 185}, {108, 234}, {53, 178}, {89, 209}, {123, 243}, {44, 165}, {96, 233}, {93, 212}, {91, 210}, {109, 228}, {125, 244}, {101, 239}, {60, 183}, {74, 193}, {72, 195}, {121, 245}, {57, 180}, {59, 182}, {108, 226}, {58, 181}, {92, 211}, {105, 230}, {127, 238}, {82, 192}, {83, 193}, {102, 244}, {98, 241}, {122, 239}, {124, 233}, {50, 164}, {85, 194}, {107, 252}, {56, 160}, {94, 198}, {91, 195}, {106, 242}, {94, 196}, {95, 197}, {29, 131}, {127, 225}, {108, 204}, {42, 139}, {56, 154}, {120, 219}, {48, 148}, {98, 199}, {96, 198}, {126, 216}, {104, 207}, {118, 222}, {50, 155}, {114, 219}, {54, 157}, {69, 238}, {100, 200}, {101, 201}, {102, 202}, {103, 203}, {64, 237}, {67, 237}, {98, 204}, {125, 211}, {114, 221}, {44, 156}, {18, 160}, {127, 205}, {66, 246}, {16, 166}, {109, 218}, {99, 216}, {100, 223}, {25, 167}, {57, 248}, {79, 142}, {68, 133}, {97, 160}, {100, 165}, {111, 172}, {82, 150}, {84, 144}, {83, 151}, {120, 188}, {81, 148}, {95, 154}, {117, 176}, {62, 249}, {102, 161}, {46, 231}, {87, 158}, {14, 196}, {15, 197}, {63, 243}, {85, 153}, {79, 131}, {78, 130}, {77, 129}, {76, 128}, {97, 172}, {104, 167}, {89, 137}, {93, 141}, {92, 140}, {91, 139}, {90, 138}, {86, 135}, {55, 229}, {84, 134}, {118, 164}, {24, 203}, {85, 134}, {104, 187}, {19, 199}, {60, 232}, {45, 248}, {70, 147}, {82, 132}, {83, 133}, {17, 198}, {103, 176}, {40, 242}, {84, 143}, {21, 200}, {82, 143}, {52, 233}, {42, 247}, {23, 202}, {126, 163}, {43, 245}, {115, 173}, {22, 201}, {87, 136}, {59, 228}, {53, 234}, {116, 148}, {47, 205}, {49, 210}, {48, 214}, {123, 156}, {75, 163}, {123, 147}, {67, 170}, {54, 220}, {122, 144}, {79, 163}, {69, 168}, {81, 191}, {35, 204}, {94, 177}, {78, 190}, {124, 140}, {75, 191}, {65, 180}, {119, 130}, {99, 149}, {70, 190}, {90, 162}, {58, 195}, {68, 189}, {64, 186}, {65, 187}, {121, 131}, {51, 200}, {93, 166}, {99, 152}, {66, 188}, {113, 142} }>;

(II) A more general form is to represent the graph as the orbit of {34, 35} under the group generated by the following permutations:

a: (1, 2, 6)(3, 10, 29)(4, 13, 37)(5, 14, 41)(7, 21, 57)(8, 24, 64)(9, 25, 68)(11, 33, 20)(12, 35, 85)(15, 32, 79)(16, 47, 71)(17, 48, 111)(18, 52, 116)(19, 54, 120)(22, 61, 99)(23, 34, 84)(26, 70, 87)(27, 72, 147)(28, 73, 149)(30, 76, 155)(31, 78, 158)(36, 86, 164)(38, 91, 169)(39, 93, 127)(40, 94, 173)(42, 100, 180)(43, 103, 186)(44, 104, 189)(45, 106, 51)(46, 108, 194)(49, 60, 131)(50, 80, 88)(53, 62, 134)(55, 123, 77)(56, 124, 191)(58, 128, 218)(59, 130, 159)(63, 135, 222)(65, 139, 223)(66, 141, 225)(67, 142, 197)(69, 144, 202)(74, 152, 101)(75, 154, 140)(81, 160, 233)(82, 161, 235)(83, 162, 224)(89, 166, 205)(90, 167, 133)(92, 163, 95)(96, 148, 97)(98, 157, 219)(102, 107, 143)(105, 190, 136)(109, 195, 227)(110, 196, 115)(112, 200, 248)(113, 203, 237)(114, 204, 153)(117, 206, 174)(118, 119, 208)(121, 210, 232)(122, 212, 238)(125, 216, 201)(126, 217, 211)(129, 179, 243)(132, 221, 241)(137, 151, 138)(145, 182, 236)(146, 228, 181)(150, 170, 240)(156, 207, 229)(165, 187, 247)(168, 239, 193)(171, 226, 250)(172, 198, 214)(175, 242, 177)(176, 183, 245)(178, 184, 246)(185, 209, 215)(188, 199, 220)(192, 244, 252)(213, 251, 230)(231, 234, 249)
b: (2, 5)(3, 9)(6, 17)(7, 20)(8, 16)(10, 28)(11, 32)(12, 27)(13, 36)(14, 40)(15, 44)(18, 51)(19, 50)(21, 56)(22, 60)(23, 38)(24, 63)(25, 67)(26, 34)(29, 74)(30, 47)(31, 35)(33, 81)(37, 89)(39, 88)(41, 96)(42, 99)(43, 93)(45, 92)(46, 87)(48, 110)(49, 90)(52, 115)(53, 109)(54, 119)(55, 107)(57, 125)(58, 127)(59, 108)(61, 116)(62, 105)(64, 137)(65, 102)(66, 86)(68, 75)(69, 72)(70, 132)(73, 148)(76, 122)(77, 114)(78, 157)(79, 83)(82, 147)(84, 146)(85, 145)(91, 168)(94, 172)(95, 165)(97, 177)(98, 164)(100, 154)(101, 183)(103, 185)(104, 170)(106, 191)(111, 198)(112, 149)(113, 166)(117, 205)(118, 204)(120, 209)(121, 202)(123, 150)(124, 214)(126, 189)(128, 144)(129, 219)(130, 220)(131, 193)(133, 163)(134, 159)(135, 188)(136, 171)(138, 176)(139, 152)(140, 175)(141, 174)(142, 151)(143, 227)(153, 190)(155, 199)(156, 197)(158, 231)(160, 200)(161, 187)(162, 210)(167, 237)(169, 192)(173, 233)(178, 218)(179, 235)(180, 244)(181, 225)(182, 226)(184, 236)(186, 224)(194, 213)(195, 238)(196, 242)(201, 232)(203, 243)(206, 239)(207, 221)(208, 246)(211, 248)(212, 245)(215, 240)(216, 247)(217, 223)(222, 241)(228, 234)(229, 252)(230, 249)(250, 251)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 252, 29 ]
252
-1 2 5 6 17
-2 1 14 48 6
-3 15 49 7 18
-4 16 50 8 19
-5 110 1 17 40
-6 1 111 2 41
-7 112 3 18 42
-8 113 4 19 43
-9 44 90 51 20
-10 60 52 21 32
-11 22 45 25 28
-12 23 46 114 53
-13 24 47 80 54
-14 2 48 94 196
-15 3 49 95 197
-16 166 4 93 50
-17 198 1 5 96
-18 3 160 7 97
-19 199 4 8 98
-20 99 149 51 9
-21 100 200 52 10
-22 11 101 201 28
-23 12 102 202 53
-24 13 103 203 54
-25 11 45 167 104
-26 55 72 105 31
-27 77 38 87 109
-28 11 22 56 115
-29 57 79 116 131
-30 36 58 80 117
-31 26 59 105 118
-32 67 92 60 10
-33 68 61 73 106
-34 35 69 62 107
-35 34 204 62 108
-36 80 30 63 119
-37 88 71 64 120
-38 121 27 65 109
-39 66 89 122 71
-40 110 242 5 172
-41 111 115 6 173
-42 112 247 7 139
-43 113 245 8 174
-44 165 90 156 9
-45 11 25 248 175
-46 231 12 114 171
-47 13 80 127 205
-48 2 14 148 214
-49 176 210 3 15
-50 155 4 16 164
-51 177 200 9 20
-52 233 96 10 21
-53 12 23 178 234
-54 220 13 24 157
-55 179 26 72 229
-56 154 115 28 160
-57 180 116 248 29
-58 181 117 30 195
-59 182 118 228 31
-60 232 183 10 32
-61 33 125 73 74
-62 34 35 249 184
-63 243 36 119 185
-64 37 237 120 186
-65 121 187 180 38
-66 122 188 246 39
-67 92 170 237 32
-68 33 133 189 106
-69 34 168 238 107
-70 78 123 190 147
-71 88 89 37 39
-72 55 91 26 195
-73 33 110 124 61
-74 125 61 83 193
-75 81 191 126 163
-76 88 128 206 86
-77 27 129 207 87
-78 190 70 119 130
-79 29 163 131 142
-80 13 36 47 30
-81 191 148 116 75
-82 132 143 192 150
-83 133 193 74 151
-84 143 144 134 85
-85 134 84 194 153
-86 88 135 76 208
-87 77 136 158 27
-88 37 71 86 76
-89 209 71 137 39
-90 44 138 162 9
-91 210 72 139 195
-92 67 211 140 32
-93 166 212 16 141
-94 198 177 14 196
-95 154 15 217 197
-96 198 233 17 52
-97 111 160 18 172
-98 199 204 19 241
-99 149 216 20 152
-100 165 200 223 21
-101 22 201 224 239
-102 23 244 202 161
-103 176 24 203 117
-104 187 167 25 207
-105 26 236 31 230
-106 33 242 68 112
-107 34 69 235 252
-108 35 234 204 226
-109 27 38 228 218
-110 124 5 40 73
-111 6 172 41 97
-112 242 7 106 42
-113 8 240 43 142
-114 12 221 46 219
-115 56 28 41 173
-116 57 81 148 29
-117 176 58 103 30
-118 222 59 31 164
-119 78 36 63 130
-120 188 37 64 219
-121 245 38 65 131
-122 66 144 39 239
-123 243 156 70 147
-124 110 233 73 140
-125 211 244 61 74
-126 216 75 163 252
-127 47 225 205 238
-128 146 227 206 76
-129 77 209 135 207
-130 78 181 236 119
-131 121 79 245 29
-132 157 82 150 153
-133 68 189 83 151
-134 231 246 84 85
-135 209 129 86 208
-136 158 182 251 87
-137 209 89 167 224
-138 90 205 162 185
-139 210 91 247 42
-140 211 233 124 92
-141 199 178 212 93
-142 79 113 163 240
-143 144 82 192 84
-144 143 122 84 239
-145 146 190 213 159
-146 145 159 128 227
-147 123 70 169 227
-148 48 81 214 116
-149 99 191 20 196
-150 132 82 203 197
-151 133 166 83 215
-152 99 168 216 162
-153 132 157 194 85
-154 56 160 95 217
-155 50 174 218 164
-156 44 165 243 123
-157 132 220 54 153
-158 136 159 87 208
-159 145 146 158 208
-160 154 56 18 97
-161 221 244 102 170
-162 90 168 138 152
-163 79 126 75 142
-164 155 222 50 118
-165 44 100 156 223
-166 16 93 215 151
-167 25 224 104 137
-168 69 238 162 152
-169 232 223 147 227
-170 67 221 237 161
-171 231 46 226 250
-172 242 111 40 97
-173 115 214 41 175
-174 155 245 218 43
-175 45 214 248 173
-176 210 103 49 117
-177 198 200 94 51
-178 199 234 53 141
-179 55 222 215 229
-180 187 57 248 65
-181 58 236 195 130
-182 59 136 228 251
-183 232 60 206 186
-184 220 225 62 249
-185 243 138 205 63
-186 237 183 206 64
-187 180 104 207 65
-188 66 246 120 219
-189 133 68 247 229
-190 78 145 70 213
-191 81 149 75 196
-192 143 201 82 217
-193 212 202 83 74
-194 249 85 250 153
-195 58 91 181 72
-196 14 191 94 149
-197 15 203 95 150
-198 177 17 94 96
-199 178 19 141 98
-200 100 177 51 21
-201 22 101 192 217
-202 23 102 212 193
-203 24 103 150 197
-204 35 108 98 241
-205 47 127 138 185
-206 128 183 76 186
-207 77 187 104 129
-208 135 158 159 86
-209 89 135 137 129
-210 176 91 49 139
-211 244 92 125 140
-212 202 93 193 141
-213 145 190 251 230
-214 48 148 173 175
-215 166 222 179 151
-216 99 126 152 252
-217 154 201 192 95
-218 155 228 174 109
-219 188 221 114 120
-220 157 225 184 54
-221 114 170 161 219
-222 179 215 118 164
-223 165 100 232 169
-224 101 167 137 239
-225 220 127 238 184
-226 234 171 250 108
-227 146 147 169 128
-228 59 182 218 109
-229 55 189 179 247
-230 213 236 105 251
-231 46 134 246 171
-232 223 169 60 183
-233 124 52 96 140
-234 178 226 53 108
-235 107 240 241 252
-236 181 105 130 230
-237 67 170 64 186
-238 69 168 225 127
-239 122 144 101 224
-240 113 235 142 241
-241 235 204 240 98
-242 112 40 106 172
-243 123 156 63 185
-244 211 102 125 161
-245 121 174 43 131
-246 66 231 188 134
-247 189 139 42 229
-248 45 57 180 175
-249 62 194 184 250
-250 171 226 194 249
-251 136 213 182 230
-252 235 126 216 107
0

**************