C4graphGraph forms for C4 [ 252, 37 ] = UG(ATD[252,65])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 252, 37 ] = UG(ATD[252,65]).

(I) Following is a form readable by MAGMA:

g:=Graph<252|{ {81, 90}, {165, 174}, {55, 59}, {166, 170}, {84, 88}, {160, 173}, {130, 147}, {40, 58}, {139, 153}, {107, 121}, {12, 31}, {75, 93}, {194, 213}, {111, 118}, {131, 152}, {138, 145}, {1, 29}, {97, 125}, {167, 185}, {215, 247}, {8, 41}, {86, 119}, {93, 124}, {20, 54}, {15, 44}, {87, 116}, {9, 45}, {73, 109}, {22, 50}, {221, 248}, {204, 234}, {6, 33}, {209, 246}, {133, 162}, {135, 160}, {19, 59}, {219, 243}, {198, 238}, {151, 191}, {137, 161}, {26, 51}, {79, 102}, {145, 187}, {214, 252}, {205, 231}, {67, 104}, {152, 179}, {84, 127}, {3, 47}, {222, 242}, {155, 183}, {71, 105}, {199, 233}, {131, 173}, {21, 58}, {196, 235}, {128, 175}, {18, 34}, {223, 239}, {64, 112}, {80, 97}, {69, 119}, {2, 49}, {156, 175}, {72, 123}, {134, 178}, {135, 179}, {17, 39}, {210, 228}, {192, 246}, {83, 101}, {1, 57}, {217, 225}, {74, 114}, {24, 32}, {65, 120}, {5, 62}, {140, 176}, {136, 181}, {130, 188}, {206, 240}, {73, 118}, {143, 176}, {52, 116}, {141, 204}, {11, 73}, {146, 208}, {145, 211}, {134, 197}, {19, 87}, {23, 82}, {157, 216}, {39, 98}, {156, 218}, {186, 252}, {172, 234}, {3, 68}, {168, 239}, {143, 199}, {60, 117}, {133, 204}, {159, 213}, {175, 229}, {35, 104}, {191, 244}, {151, 220}, {6, 74}, {31, 83}, {13, 64}, {36, 105}, {132, 203}, {153, 214}, {17, 65}, {178, 226}, {167, 247}, {62, 111}, {9, 90}, {190, 237}, {1, 85}, {144, 196}, {4, 80}, {10, 95}, {150, 195}, {144, 197}, {26, 76}, {184, 238}, {183, 225}, {177, 231}, {165, 243}, {45, 123}, {14, 89}, {187, 236}, {34, 117}, {16, 71}, {15, 88}, {22, 78}, {56, 96}, {46, 118}, {40, 112}, {36, 125}, {185, 224}, {40, 115}, {160, 251}, {154, 193}, {63, 100}, {140, 208}, {169, 245}, {61, 96}, {161, 252}, {182, 232}, {7, 103}, {33, 65}, {58, 91}, {171, 202}, {152, 249}, {136, 233}, {23, 116}, {146, 241}, {38, 69}, {162, 198}, {164, 192}, {174, 203}, {169, 207}, {42, 77}, {187, 220}, {54, 81}, {53, 82}, {50, 85}, {44, 75}, {27, 115}, {18, 123}, {163, 202}, {43, 66}, {138, 227}, {172, 198}, {189, 215}, {21, 126}, {147, 248}, {48, 91}, {29, 113}, {191, 211}, {179, 223}, {161, 205}, {4, 105}, {49, 92}, {39, 74}, {130, 239}, {134, 232}, {181, 219}, {32, 79}, {48, 64}, {173, 221}, {16, 97}, {52, 70}, {184, 204}, {10, 127}, {144, 229}, {42, 95}, {129, 244}, {132, 241}, {13, 122}, {190, 201}, {156, 235}, {29, 106}, {28, 107}, {18, 101}, {166, 222}, {23, 110}, {157, 230}, {9, 117}, {158, 226}, {24, 100}, {22, 106}, {149, 232}, {2, 124}, {153, 231}, {30, 97}, {41, 86}, {38, 89}, {33, 94}, {102, 230}, {21, 148}, {53, 180}, {121, 248}, {81, 211}, {12, 143}, {45, 174}, {13, 142}, {96, 227}, {62, 186}, {92, 216}, {56, 189}, {14, 136}, {72, 206}, {86, 208}, {90, 220}, {91, 221}, {34, 165}, {3, 139}, {67, 203}, {32, 168}, {108, 228}, {115, 250}, {45, 167}, {55, 188}, {1, 141}, {8, 132}, {33, 172}, {79, 194}, {46, 163}, {41, 164}, {127, 242}, {70, 200}, {101, 235}, {120, 246}, {59, 180}, {83, 220}, {14, 158}, {57, 169}, {89, 201}, {95, 207}, {104, 250}, {8, 155}, {68, 215}, {61, 174}, {26, 137}, {25, 138}, {19, 128}, {99, 240}, {113, 226}, {114, 225}, {36, 177}, {80, 197}, {85, 192}, {35, 181}, {66, 212}, {76, 219}, {5, 157}, {11, 146}, {110, 247}, {118, 236}, {124, 230}, {30, 133}, {57, 162}, {52, 175}, {34, 185}, {31, 131}, {63, 163}, {106, 246}, {124, 224}, {71, 218}, {7, 152}, {82, 205}, {39, 184}, {10, 149}, {93, 194}, {67, 227}, {120, 217}, {99, 193}, {108, 206}, {86, 245}, {114, 209}, {20, 176}, {70, 226}, {37, 129}, {30, 186}, {87, 243}, {55, 146}, {2, 164}, {12, 170}, {48, 151}, {60, 155}, {53, 157}, {123, 210}, {49, 155}, {66, 232}, {64, 234}, {109, 199}, {16, 187}, {43, 128}, {113, 218}, {56, 148}, {93, 241}, {35, 142}, {24, 182}, {103, 200}, {108, 195}, {112, 223}, {119, 216}, {27, 171}, {116, 196}, {11, 186}, {54, 135}, {92, 237}, {99, 210}, {111, 222}, {126, 207}, {20, 166}, {14, 189}, {122, 201}, {5, 177}, {77, 249}, {50, 134}, {22, 162}, {85, 225}, {101, 211}, {63, 136}, {68, 243}, {40, 145}, {37, 159}, {48, 138}, {4, 191}, {78, 245}, {76, 247}, {117, 206}, {125, 198}, {28, 160}, {15, 178}, {84, 233}, {69, 251}, {10, 181}, {62, 129}, {44, 147}, {90, 229}, {107, 212}, {3, 195}, {126, 190}, {23, 214}, {77, 140}, {95, 158}, {127, 189}, {78, 141}, {98, 161}, {41, 237}, {53, 241}, {49, 245}, {54, 240}, {61, 250}, {76, 139}, {94, 153}, {113, 182}, {2, 203}, {37, 236}, {24, 209}, {84, 159}, {109, 166}, {110, 165}, {17, 221}, {80, 156}, {89, 149}, {63, 242}, {68, 137}, {102, 171}, {121, 180}, {27, 213}, {98, 172}, {92, 140}, {42, 251}, {55, 230}, {121, 168}, {81, 131}, {7, 212}, {70, 149}, {25, 202}, {11, 216}, {103, 180}, {122, 169}, {28, 200}, {83, 135}, {58, 238}, {57, 237}, {5, 208}, {15, 217}, {100, 178}, {71, 144}, {94, 137}, {107, 188}, {29, 197}, {36, 252}, {6, 223}, {46, 244}, {51, 233}, {25, 194}, {65, 154}, {26, 193}, {66, 158}, {79, 147}, {74, 150}, {47, 242}, {61, 224}, {106, 183}, {112, 173}, {119, 170}, {19, 205}, {38, 249}, {52, 212}, {75, 171}, {111, 143}, {9, 235}, {102, 132}, {13, 238}, {75, 168}, {56, 219}, {43, 200}, {42, 201}, {25, 250}, {16, 244}, {115, 151}, {28, 249}, {103, 130}, {94, 184}, {77, 170}, {4, 236}, {50, 218}, {47, 199}, {8, 224}, {91, 179}, {114, 154}, {38, 207}, {98, 139}, {72, 164}, {105, 133}, {109, 129}, {51, 222}, {59, 214}, {47, 193}, {82, 188}, {60, 210}, {88, 182}, {96, 142}, {110, 128}, {120, 150}, {122, 148}, {37, 202}, {43, 196}, {20, 228}, {78, 190}, {51, 195}, {87, 167}, {125, 141}, {126, 142}, {35, 215}, {69, 176}, {99, 150}, {108, 154}, {18, 229}, {27, 227}, {73, 177}, {30, 231}, {32, 217}, {67, 185}, {31, 228}, {46, 213}, {88, 163}, {100, 159}, {7, 251}, {60, 192}, {12, 240}, {104, 148}, {44, 209}, {6, 248}, {17, 239}, {21, 234}, {72, 183} }>;

(II) A more general form is to represent the graph as the orbit of {81, 90} under the group generated by the following permutations:

a: (1, 2, 5, 12, 7, 14, 21)(3, 6, 15, 25, 16, 18, 23)(4, 9, 19, 26, 17, 24, 27)(8, 11, 20, 28, 10, 13, 22)(29, 203, 177, 240, 103, 136, 58)(30, 210, 188, 242, 112, 134, 61)(31, 212, 189, 234, 85, 124, 62)(32, 213, 191, 235, 87, 137, 65)(33, 217, 194, 244, 101, 116, 68)(34, 214, 195, 248, 88, 138, 71)(35, 198, 183, 241, 109, 135, 70)(36, 206, 180, 233, 91, 113, 67)(37, 220, 175, 247, 98, 114, 75)(38, 207, 169, 245, 86, 119, 69)(39, 209, 171, 236, 90, 128, 76)(40, 197, 174, 231, 99, 130, 63)(41, 216, 176, 249, 95, 122, 78)(42, 201, 190, 237, 92, 140, 77)(43, 219, 184, 246, 102, 118, 81)(44, 202, 187, 229, 110, 139, 74)(45, 205, 193, 239, 100, 115, 80)(46, 211, 196, 243, 94, 120, 79)(47, 223, 178, 250, 97, 123, 82)(48, 218, 185, 252, 108, 121, 84)(49, 208, 170, 251, 89, 126, 57)(50, 224, 186, 228, 107, 127, 64)(51, 221, 182, 227, 105, 117, 59)(52, 215, 172, 225, 93, 129, 83)(53, 199, 179, 226, 104, 125, 72)(54, 200, 181, 238, 106, 132, 73)(55, 222, 173, 232, 96, 133, 60)(56, 204, 192, 230, 111, 131, 66)(141, 164, 157, 143, 152, 158, 148)(142, 162, 155, 146, 166, 160, 149)(144, 165, 153, 150, 147, 163, 145)(151, 156, 167, 161, 154, 168, 159)
b: (1, 29)(2, 44)(3, 31)(4, 36)(5, 37)(6, 45)(7, 35)(8, 32)(9, 33)(10, 42)(11, 46)(12, 47)(13, 52)(14, 38)(15, 49)(16, 30)(17, 34)(18, 39)(19, 40)(20, 51)(21, 43)(22, 50)(23, 48)(24, 41)(25, 53)(26, 54)(27, 55)(28, 56)(57, 113)(58, 128)(59, 115)(60, 120)(61, 121)(62, 129)(63, 119)(64, 116)(65, 117)(66, 126)(67, 130)(68, 131)(69, 136)(70, 122)(71, 133)(72, 114)(73, 118)(74, 123)(75, 124)(76, 135)(77, 127)(78, 134)(79, 132)(80, 125)(81, 137)(82, 138)(83, 139)(84, 140)(85, 106)(86, 100)(87, 112)(88, 92)(90, 94)(91, 110)(96, 107)(98, 101)(103, 104)(109, 111)(141, 197)(142, 212)(143, 199)(144, 204)(145, 205)(146, 213)(147, 203)(148, 200)(149, 201)(150, 210)(151, 214)(152, 215)(153, 220)(154, 206)(155, 217)(156, 198)(157, 202)(158, 207)(159, 208)(160, 219)(161, 211)(162, 218)(163, 216)(164, 209)(165, 221)(166, 222)(167, 223)(168, 224)(169, 226)(170, 242)(171, 230)(172, 235)(173, 243)(174, 248)(175, 238)(176, 233)(177, 236)(178, 245)(179, 247)(180, 250)(181, 251)(182, 237)(183, 225)(184, 229)(185, 239)(186, 244)(187, 231)(188, 227)(189, 249)(190, 232)(191, 252)(192, 246)(193, 240)(194, 241)(195, 228)(196, 234)
c: (2, 8)(3, 7)(4, 16)(5, 18)(6, 10)(9, 11)(13, 15)(14, 17)(21, 24)(26, 28)(29, 141)(30, 156)(31, 143)(32, 148)(33, 149)(34, 157)(35, 147)(36, 144)(37, 145)(38, 154)(39, 158)(40, 159)(41, 164)(42, 150)(43, 161)(44, 142)(45, 146)(46, 151)(47, 152)(48, 163)(49, 155)(50, 162)(51, 160)(52, 153)(53, 165)(54, 166)(55, 167)(56, 168)(57, 85)(58, 100)(59, 87)(60, 92)(61, 93)(62, 101)(63, 91)(64, 88)(65, 89)(66, 98)(67, 102)(68, 103)(69, 108)(70, 94)(71, 105)(72, 86)(73, 90)(74, 95)(75, 96)(76, 107)(77, 99)(78, 106)(79, 104)(80, 97)(81, 109)(82, 110)(83, 111)(84, 112)(113, 204)(114, 207)(115, 213)(116, 214)(117, 216)(118, 220)(119, 206)(120, 201)(121, 219)(122, 217)(123, 208)(124, 224)(125, 197)(126, 209)(127, 223)(128, 205)(129, 211)(130, 215)(131, 199)(132, 203)(133, 218)(134, 198)(135, 222)(136, 221)(137, 200)(138, 202)(139, 212)(140, 210)(169, 225)(170, 240)(171, 227)(172, 232)(173, 233)(174, 241)(175, 231)(176, 228)(177, 229)(178, 238)(179, 242)(180, 243)(181, 248)(182, 234)(183, 245)(184, 226)(185, 230)(186, 235)(187, 236)(188, 247)(189, 239)(190, 246)(191, 244)(192, 237)(193, 249)(194, 250)(195, 251)(196, 252)
d: (2, 16)(4, 8)(5, 9)(6, 17)(10, 14)(11, 18)(12, 19)(13, 24)(15, 21)(20, 23)(29, 57)(30, 72)(31, 59)(32, 64)(33, 65)(34, 73)(35, 63)(36, 60)(37, 61)(38, 70)(39, 74)(40, 75)(41, 80)(42, 66)(43, 77)(44, 58)(45, 62)(46, 67)(47, 68)(48, 79)(49, 71)(50, 78)(51, 76)(52, 69)(53, 81)(54, 82)(55, 83)(56, 84)(85, 141)(86, 156)(87, 143)(88, 148)(89, 149)(90, 157)(91, 147)(92, 144)(93, 145)(94, 154)(95, 158)(96, 159)(97, 164)(98, 150)(99, 161)(100, 142)(101, 146)(102, 151)(103, 152)(104, 163)(105, 155)(106, 162)(107, 160)(108, 153)(109, 165)(110, 166)(111, 167)(112, 168)(113, 169)(114, 184)(115, 171)(116, 176)(117, 177)(118, 185)(119, 175)(120, 172)(121, 173)(122, 182)(123, 186)(124, 187)(125, 192)(126, 178)(127, 189)(128, 170)(129, 174)(130, 179)(131, 180)(132, 191)(133, 183)(134, 190)(135, 188)(136, 181)(137, 193)(138, 194)(139, 195)(140, 196)(197, 237)(198, 246)(199, 243)(200, 249)(201, 232)(202, 250)(203, 244)(204, 225)(205, 240)(206, 231)(207, 226)(208, 235)(209, 238)(210, 252)(211, 241)(212, 251)(213, 227)(214, 228)(215, 242)(216, 229)(217, 234)(218, 245)(219, 233)(220, 230)(221, 248)(222, 247)(223, 239)(224, 236)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 252, 37 ]
252
-1 57 29 85 141
-2 124 49 203 164
-3 68 47 139 195
-4 80 191 236 105
-5 177 157 62 208
-6 33 223 248 74
-7 212 103 152 251
-8 132 155 224 41
-9 45 90 235 117
-10 181 127 149 95
-11 146 73 216 186
-12 143 170 31 240
-13 122 238 64 142
-14 89 189 136 158
-15 44 88 178 217
-16 187 244 71 97
-17 221 39 239 65
-18 34 101 123 229
-19 59 128 205 87
-20 176 166 228 54
-21 58 234 126 148
-22 78 50 106 162
-23 110 82 214 116
-24 209 100 182 32
-25 202 138 194 250
-26 137 193 51 76
-27 213 115 171 227
-28 200 160 249 107
-29 1 113 106 197
-30 231 133 97 186
-31 12 83 228 131
-32 24 79 168 217
-33 6 94 172 65
-34 165 18 117 185
-35 104 181 215 142
-36 177 125 105 252
-37 202 159 236 129
-38 89 69 249 207
-39 17 74 184 98
-40 112 145 58 115
-41 237 8 86 164
-42 77 201 95 251
-43 66 200 128 196
-44 209 15 147 75
-45 123 167 9 174
-46 244 213 118 163
-47 242 199 3 193
-48 91 138 151 64
-49 155 2 245 92
-50 22 134 85 218
-51 222 233 26 195
-52 212 70 116 175
-53 157 180 82 241
-54 135 81 20 240
-55 188 146 59 230
-56 189 148 96 219
-57 1 169 237 162
-58 91 40 238 21
-59 55 180 214 19
-60 155 210 192 117
-61 224 96 250 174
-62 111 5 129 186
-63 242 100 136 163
-64 13 112 234 48
-65 33 154 17 120
-66 232 212 158 43
-67 104 203 227 185
-68 243 3 137 215
-69 176 38 119 251
-70 200 149 226 52
-71 144 16 105 218
-72 123 183 206 164
-73 11 177 118 109
-74 114 6 39 150
-75 44 168 93 171
-76 26 247 139 219
-77 170 249 140 42
-78 22 190 245 141
-79 102 147 194 32
-80 156 4 97 197
-81 90 211 54 131
-82 23 188 205 53
-83 220 101 135 31
-84 88 233 159 127
-85 1 192 225 50
-86 245 41 119 208
-87 243 167 116 19
-88 15 182 84 163
-89 14 201 38 149
-90 220 81 9 229
-91 221 58 179 48
-92 49 237 216 140
-93 124 194 75 241
-94 33 137 184 153
-95 158 42 207 10
-96 56 61 227 142
-97 80 125 16 30
-98 39 139 161 172
-99 210 193 150 240
-100 24 178 159 63
-101 211 235 83 18
-102 132 79 171 230
-103 200 180 7 130
-104 67 35 148 250
-105 133 36 4 71
-106 22 246 29 183
-107 121 188 212 28
-108 154 195 206 228
-109 166 199 73 129
-110 165 23 247 128
-111 143 222 62 118
-112 223 40 173 64
-113 182 226 29 218
-114 154 209 225 74
-115 27 40 151 250
-116 23 52 196 87
-117 34 60 206 9
-118 111 46 236 73
-119 69 170 216 86
-120 246 150 217 65
-121 168 180 248 107
-122 13 201 169 148
-123 45 210 72 18
-124 2 224 93 230
-125 198 36 97 141
-126 190 207 21 142
-127 242 189 84 10
-128 110 19 43 175
-129 244 37 62 109
-130 188 103 147 239
-131 81 173 31 152
-132 102 203 8 241
-133 105 204 30 162
-134 232 178 50 197
-135 179 83 160 54
-136 233 14 181 63
-137 68 26 94 161
-138 145 25 48 227
-139 3 76 98 153
-140 77 176 92 208
-141 1 78 125 204
-142 13 35 126 96
-143 176 12 111 199
-144 71 196 229 197
-145 187 211 138 40
-146 11 55 208 241
-147 44 79 248 130
-148 56 122 104 21
-149 89 232 70 10
-150 99 74 195 120
-151 220 48 191 115
-152 179 7 249 131
-153 231 214 94 139
-154 114 193 108 65
-155 49 60 183 8
-156 80 235 218 175
-157 5 216 53 230
-158 66 14 226 95
-159 100 37 213 84
-160 135 28 173 251
-161 137 205 98 252
-162 22 198 133 57
-163 88 46 202 63
-164 2 192 72 41
-165 110 34 243 174
-166 222 170 20 109
-167 45 247 185 87
-168 121 239 75 32
-169 122 57 245 207
-170 77 12 166 119
-171 102 202 27 75
-172 33 198 234 98
-173 221 112 160 131
-174 165 45 203 61
-175 156 128 52 229
-176 143 69 140 20
-177 231 36 5 73
-178 100 134 15 226
-179 91 135 223 152
-180 121 59 103 53
-181 35 136 10 219
-182 88 232 24 113
-183 155 225 72 106
-184 39 94 204 238
-185 34 67 167 224
-186 11 62 30 252
-187 220 145 16 236
-188 55 82 107 130
-189 56 14 127 215
-190 78 201 126 237
-191 211 244 4 151
-192 246 60 85 164
-193 99 154 47 26
-194 79 25 213 93
-195 3 51 150 108
-196 144 235 116 43
-197 144 134 80 29
-198 125 172 238 162
-199 143 233 47 109
-200 70 103 28 43
-201 89 122 190 42
-202 25 37 171 163
-203 132 67 2 174
-204 133 234 184 141
-205 231 82 161 19
-206 72 117 108 240
-207 169 38 126 95
-208 146 5 140 86
-209 44 24 114 246
-210 99 123 60 228
-211 101 145 81 191
-212 66 7 52 107
-213 46 27 159 194
-214 23 59 153 252
-215 35 68 189 247
-216 11 157 92 119
-217 15 225 32 120
-218 156 113 71 50
-219 56 243 181 76
-220 187 90 83 151
-221 91 17 248 173
-222 242 111 166 51
-223 112 179 6 239
-224 124 61 8 185
-225 114 183 85 217
-226 178 113 70 158
-227 67 27 138 96
-228 210 20 31 108
-229 144 90 18 175
-230 55 102 124 157
-231 177 205 30 153
-232 66 134 149 182
-233 199 136 51 84
-234 204 172 64 21
-235 101 156 9 196
-236 187 4 37 118
-237 57 190 92 41
-238 198 13 58 184
-239 168 223 17 130
-240 99 12 206 54
-241 132 146 93 53
-242 222 47 127 63
-243 165 68 87 219
-244 46 191 16 129
-245 78 169 49 86
-246 209 192 106 120
-247 110 167 215 76
-248 121 221 147 6
-249 77 38 28 152
-250 25 104 115 61
-251 69 160 7 42
-252 36 214 161 186
0

**************