C4graphGraph forms for C4 [ 252, 40 ] = UG(ATD[252,68])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 252, 40 ] = UG(ATD[252,68]).

(I) Following is a form readable by MAGMA:

g:=Graph<252|{ {14, 15}, {180, 181}, {249, 251}, {1, 2}, {1, 5}, {209, 213}, {48, 52}, {3, 7}, {2, 6}, {162, 167}, {216, 221}, {202, 207}, {113, 119}, {186, 188}, {34, 37}, {123, 124}, {130, 138}, {131, 139}, {134, 142}, {135, 143}, {3, 10}, {115, 122}, {128, 137}, {85, 95}, {224, 234}, {103, 109}, {132, 142}, {21, 30}, {230, 237}, {228, 239}, {227, 232}, {208, 219}, {33, 42}, {162, 169}, {4, 8}, {231, 235}, {36, 40}, {65, 76}, {178, 191}, {50, 60}, {128, 142}, {13, 29}, {98, 114}, {138, 154}, {170, 186}, {38, 55}, {224, 241}, {207, 222}, {2, 16}, {7, 20}, {203, 216}, {15, 28}, {11, 24}, {110, 125}, {196, 208}, {4, 17}, {101, 112}, {14, 27}, {12, 25}, {6, 19}, {77, 91}, {78, 88}, {108, 122}, {5, 18}, {13, 26}, {139, 156}, {77, 85}, {226, 250}, {97, 121}, {136, 144}, {233, 240}, {68, 94}, {69, 95}, {193, 218}, {225, 250}, {203, 208}, {45, 49}, {206, 210}, {47, 51}, {46, 50}, {8, 21}, {10, 23}, {67, 93}, {233, 247}, {107, 117}, {9, 22}, {204, 211}, {69, 101}, {90, 123}, {134, 164}, {212, 246}, {29, 62}, {79, 108}, {152, 187}, {141, 169}, {27, 62}, {9, 46}, {222, 249}, {199, 224}, {149, 178}, {9, 33}, {206, 230}, {197, 237}, {194, 234}, {70, 110}, {19, 59}, {12, 36}, {11, 35}, {10, 34}, {134, 174}, {10, 32}, {74, 96}, {21, 63}, {20, 62}, {17, 59}, {16, 58}, {129, 171}, {30, 53}, {204, 231}, {198, 237}, {154, 177}, {155, 176}, {143, 163}, {18, 60}, {205, 227}, {19, 61}, {136, 166}, {195, 236}, {5, 53}, {23, 39}, {8, 56}, {7, 55}, {6, 54}, {129, 177}, {156, 173}, {217, 232}, {215, 229}, {192, 243}, {89, 109}, {200, 252}, {202, 252}, {215, 225}, {14, 57}, {220, 235}, {206, 249}, {75, 124}, {66, 117}, {75, 115}, {195, 251}, {135, 191}, {72, 113}, {220, 229}, {84, 109}, {148, 173}, {83, 105}, {194, 248}, {147, 169}, {73, 114}, {158, 165}, {129, 189}, {205, 241}, {130, 190}, {74, 116}, {201, 247}, {93, 99}, {133, 187}, {137, 183}, {149, 171}, {95, 96}, {209, 238}, {22, 86}, {157, 221}, {63, 126}, {180, 245}, {136, 201}, {41, 107}, {61, 127}, {36, 103}, {191, 252}, {185, 250}, {160, 227}, {155, 222}, {34, 100}, {182, 240}, {57, 127}, {43, 109}, {35, 101}, {154, 220}, {167, 225}, {33, 102}, {136, 192}, {23, 94}, {143, 196}, {180, 248}, {16, 93}, {56, 117}, {39, 106}, {37, 104}, {139, 197}, {140, 194}, {141, 195}, {38, 105}, {189, 242}, {185, 246}, {165, 245}, {190, 238}, {183, 231}, {184, 233}, {164, 240}, {167, 243}, {144, 197}, {22, 64}, {187, 237}, {137, 223}, {165, 242}, {28, 68}, {29, 69}, {24, 65}, {31, 70}, {26, 67}, {153, 192}, {25, 66}, {11, 87}, {54, 106}, {156, 193}, {170, 244}, {175, 207}, {49, 80}, {145, 240}, {44, 72}, {132, 224}, {42, 79}, {137, 236}, {40, 78}, {186, 220}, {170, 204}, {32, 71}, {48, 87}, {140, 235}, {146, 245}, {150, 241}, {27, 115}, {188, 212}, {33, 72}, {37, 76}, {35, 74}, {131, 234}, {23, 125}, {188, 214}, {51, 89}, {50, 88}, {39, 77}, {28, 118}, {18, 121}, {34, 73}, {176, 219}, {35, 79}, {152, 244}, {4, 105}, {181, 216}, {11, 102}, {52, 90}, {166, 200}, {177, 223}, {36, 75}, {182, 217}, {43, 91}, {51, 67}, {44, 92}, {58, 75}, {168, 218}, {29, 110}, {151, 228}, {179, 199}, {148, 226}, {153, 239}, {158, 232}, {150, 225}, {189, 197}, {41, 80}, {60, 69}, {47, 86}, {45, 84}, {43, 82}, {157, 228}, {128, 250}, {171, 209}, {42, 81}, {46, 85}, {143, 244}, {63, 67}, {184, 196}, {59, 70}, {61, 64}, {168, 213}, {174, 211}, {31, 97}, {52, 74}, {44, 83}, {141, 242}, {82, 210}, {3, 130}, {16, 145}, {17, 146}, {73, 202}, {111, 236}, {51, 183}, {72, 204}, {20, 145}, {82, 215}, {92, 219}, {116, 243}, {20, 157}, {86, 223}, {28, 150}, {124, 246}, {24, 147}, {88, 211}, {37, 174}, {111, 228}, {25, 148}, {98, 239}, {17, 159}, {83, 221}, {26, 149}, {116, 251}, {53, 164}, {55, 166}, {100, 246}, {118, 229}, {91, 207}, {13, 152}, {32, 181}, {81, 199}, {76, 212}, {19, 138}, {90, 195}, {38, 191}, {21, 140}, {31, 132}, {62, 162}, {126, 226}, {30, 131}, {49, 172}, {79, 209}, {84, 202}, {120, 230}, {87, 200}, {48, 145}, {63, 158}, {60, 157}, {2, 161}, {56, 155}, {98, 198}, {32, 133}, {54, 147}, {53, 144}, {58, 156}, {77, 235}, {124, 218}, {48, 151}, {68, 236}, {78, 230}, {41, 128}, {38, 140}, {107, 193}, {93, 247}, {27, 176}, {97, 205}, {55, 154}, {99, 206}, {85, 248}, {121, 212}, {41, 135}, {54, 153}, {120, 215}, {115, 194}, {119, 198}, {118, 196}, {6, 178}, {3, 182}, {125, 200}, {47, 152}, {89, 238}, {126, 201}, {61, 133}, {94, 231}, {111, 214}, {25, 163}, {104, 210}, {78, 244}, {45, 151}, {76, 247}, {96, 219}, {110, 213}, {71, 251}, {122, 198}, {123, 199}, {13, 179}, {81, 239}, {44, 146}, {57, 134}, {40, 232}, {119, 183}, {1, 192}, {24, 217}, {114, 179}, {117, 180}, {121, 184}, {123, 186}, {112, 179}, {122, 185}, {127, 188}, {102, 162}, {12, 201}, {40, 238}, {125, 187}, {30, 217}, {66, 138}, {113, 184}, {119, 190}, {105, 163}, {84, 159}, {1, 205}, {113, 189}, {95, 146}, {97, 175}, {99, 172}, {127, 175}, {52, 229}, {8, 218}, {98, 176}, {90, 142}, {5, 211}, {126, 168}, {45, 245}, {116, 172}, {15, 214}, {58, 227}, {18, 203}, {107, 177}, {14, 213}, {57, 226}, {73, 149}, {106, 182}, {101, 185}, {104, 181}, {108, 178}, {64, 159}, {9, 233}, {65, 160}, {71, 165}, {31, 252}, {66, 161}, {64, 164}, {112, 148}, {15, 234}, {39, 193}, {120, 158}, {22, 241}, {68, 163}, {65, 166}, {49, 214}, {26, 242}, {99, 139}, {71, 175}, {59, 210}, {108, 133}, {103, 141}, {104, 132}, {50, 223}, {106, 135}, {120, 151}, {46, 222}, {114, 130}, {92, 174}, {100, 150}, {43, 216}, {88, 171}, {56, 203}, {112, 131}, {7, 243}, {12, 248}, {89, 172}, {86, 160}, {91, 173}, {87, 161}, {42, 221}, {103, 144}, {80, 167}, {118, 129}, {70, 190}, {81, 168}, {96, 153}, {80, 170}, {82, 169}, {100, 159}, {92, 160}, {111, 147}, {4, 249}, {102, 155}, {83, 173}, {47, 208}, {94, 161} }>;

(II) A more general form is to represent the graph as the orbit of {14, 15} under the group generated by the following permutations:

a: (2, 192)(3, 11)(4, 245)(5, 205)(6, 153)(7, 87)(8, 165)(9, 37)(10, 102)(12, 99)(13, 213)(14, 152)(15, 244)(16, 136)(17, 146)(18, 97)(19, 96)(20, 200)(21, 158)(22, 174)(23, 162)(24, 182)(25, 172)(26, 168)(27, 187)(28, 170)(29, 110)(30, 232)(31, 60)(32, 155)(33, 34)(35, 130)(36, 139)(38, 151)(39, 169)(40, 131)(41, 236)(42, 73)(43, 91)(44, 159)(45, 105)(46, 104)(47, 57)(48, 55)(49, 163)(50, 132)(51, 226)(52, 154)(53, 227)(56, 71)(58, 144)(59, 95)(61, 219)(62, 125)(64, 92)(65, 240)(66, 116)(67, 126)(68, 80)(69, 70)(72, 100)(74, 138)(75, 197)(76, 233)(77, 82)(78, 234)(79, 114)(81, 149)(83, 84)(85, 210)(86, 134)(88, 224)(89, 148)(90, 177)(93, 201)(94, 167)(98, 108)(101, 190)(103, 156)(106, 147)(107, 195)(109, 173)(111, 135)(112, 238)(113, 246)(115, 237)(117, 251)(118, 186)(119, 185)(120, 140)(122, 198)(123, 129)(124, 189)(127, 208)(128, 137)(133, 176)(141, 193)(142, 223)(143, 214)(145, 166)(150, 204)(157, 252)(160, 164)(161, 243)(171, 199)(175, 203)(178, 239)(179, 209)(180, 249)(181, 222)(183, 250)(184, 212)(188, 196)(191, 228)(194, 230)(202, 221)(206, 248)(207, 216)(211, 241)(215, 235)(218, 242)(220, 229)(225, 231)
b: (2, 5)(3, 9)(4, 13)(6, 18)(7, 22)(8, 26)(10, 33)(11, 37)(12, 40)(14, 45)(15, 49)(16, 53)(17, 29)(19, 60)(20, 64)(21, 67)(23, 72)(24, 76)(25, 78)(27, 84)(28, 80)(30, 93)(31, 96)(32, 42)(34, 102)(35, 104)(38, 47)(39, 113)(41, 118)(43, 122)(44, 125)(46, 130)(48, 134)(50, 138)(51, 140)(52, 142)(54, 121)(55, 86)(56, 149)(57, 151)(58, 144)(59, 69)(61, 157)(62, 159)(66, 88)(68, 170)(70, 95)(71, 81)(73, 155)(74, 132)(75, 103)(77, 119)(79, 181)(82, 185)(83, 187)(85, 190)(87, 174)(89, 194)(91, 198)(92, 200)(94, 204)(97, 153)(98, 207)(99, 131)(100, 162)(101, 210)(105, 152)(106, 184)(107, 129)(108, 216)(109, 115)(110, 146)(111, 188)(112, 206)(114, 222)(116, 224)(117, 171)(120, 226)(123, 195)(124, 141)(126, 158)(127, 228)(128, 229)(133, 221)(135, 196)(136, 227)(137, 220)(145, 164)(147, 212)(148, 230)(150, 167)(154, 223)(156, 197)(160, 166)(161, 211)(163, 244)(165, 168)(169, 246)(172, 234)(173, 237)(175, 239)(176, 202)(178, 203)(179, 249)(180, 209)(182, 233)(183, 235)(186, 236)(189, 193)(191, 208)(192, 205)(199, 251)(201, 232)(213, 245)(215, 250)(217, 247)(218, 242)(219, 252)(238, 248)(241, 243)
c: (1, 2)(3, 76)(4, 222)(5, 161)(6, 205)(7, 247)(8, 155)(9, 38)(10, 37)(11, 30)(12, 157)(13, 250)(14, 213)(15, 209)(16, 192)(17, 207)(18, 66)(19, 97)(20, 201)(21, 102)(22, 191)(23, 174)(24, 217)(25, 60)(26, 225)(27, 168)(28, 171)(29, 226)(31, 61)(32, 104)(33, 140)(35, 131)(36, 228)(39, 92)(40, 111)(41, 47)(42, 194)(43, 245)(44, 77)(45, 109)(46, 105)(48, 144)(49, 89)(50, 163)(51, 80)(52, 197)(53, 87)(54, 227)(55, 233)(57, 110)(58, 153)(59, 175)(62, 126)(63, 162)(64, 252)(65, 182)(67, 167)(68, 88)(69, 148)(70, 127)(71, 210)(72, 235)(73, 100)(74, 139)(75, 239)(78, 236)(79, 234)(81, 115)(82, 165)(83, 85)(86, 135)(90, 237)(91, 146)(93, 243)(94, 211)(95, 173)(96, 156)(98, 124)(99, 116)(101, 112)(103, 151)(106, 160)(107, 208)(108, 224)(113, 220)(114, 246)(117, 203)(118, 129)(119, 186)(120, 141)(121, 138)(122, 199)(123, 198)(125, 134)(128, 152)(130, 212)(132, 133)(136, 145)(137, 244)(142, 187)(143, 223)(147, 232)(149, 150)(154, 184)(158, 169)(159, 202)(164, 200)(166, 240)(170, 183)(176, 218)(177, 196)(178, 241)(179, 185)(180, 216)(188, 190)(189, 229)(193, 219)(195, 230)(204, 231)(206, 251)(214, 238)(215, 242)(221, 248)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 252, 40 ]
252
-1 2 5 192 205
-2 1 16 6 161
-3 182 7 130 10
-4 17 105 249 8
-5 1 211 18 53
-6 2 178 19 54
-7 55 243 3 20
-8 56 4 218 21
-9 22 33 46 233
-10 23 34 3 32
-11 24 35 102 87
-12 25 36 201 248
-13 179 26 29 152
-14 57 15 213 27
-15 14 234 214 28
-16 2 145 58 93
-17 146 4 59 159
-18 121 5 60 203
-19 59 6 61 138
-20 145 157 7 62
-21 140 8 63 30
-22 9 64 86 241
-23 125 39 94 10
-24 11 147 217 65
-25 66 12 148 163
-26 242 67 13 149
-27 176 14 115 62
-28 68 15 150 118
-29 110 13 69 62
-30 217 53 21 131
-31 132 70 97 252
-32 133 71 181 10
-33 102 72 9 42
-34 100 37 73 10
-35 11 79 101 74
-36 12 103 40 75
-37 34 104 174 76
-38 55 191 105 140
-39 77 23 193 106
-40 78 232 36 238
-41 80 135 128 107
-42 33 221 79 81
-43 91 82 216 109
-44 146 92 72 83
-45 245 49 84 151
-46 222 50 85 9
-47 51 86 152 208
-48 145 52 151 87
-49 45 80 214 172
-50 88 46 223 60
-51 67 89 47 183
-52 90 48 74 229
-53 144 5 30 164
-54 147 6 106 153
-55 154 166 38 7
-56 155 203 117 8
-57 134 14 127 226
-58 156 16 227 75
-59 210 70 17 19
-60 69 157 50 18
-61 133 127 19 64
-62 27 29 162 20
-63 67 158 126 21
-64 22 159 61 164
-65 166 24 160 76
-66 25 138 117 161
-67 26 93 51 63
-68 236 28 94 163
-69 101 60 29 95
-70 110 190 59 31
-71 165 251 32 175
-72 33 44 113 204
-73 34 114 202 149
-74 35 116 52 96
-75 36 58 124 115
-76 212 37 247 65
-77 91 235 39 85
-78 88 244 40 230
-79 209 35 42 108
-80 167 49 170 41
-81 199 168 239 42
-82 210 169 215 43
-83 44 221 105 173
-84 45 202 159 109
-85 77 46 248 95
-86 22 47 223 160
-87 11 200 48 161
-88 78 211 50 171
-89 51 172 238 109
-90 123 52 195 142
-91 77 173 207 43
-92 44 160 174 219
-93 99 67 16 247
-94 231 23 68 161
-95 69 146 85 96
-96 95 74 153 219
-97 121 205 31 175
-98 176 198 114 239
-99 93 139 172 206
-100 34 246 159 150
-101 35 112 69 185
-102 11 33 155 162
-103 144 36 141 109
-104 132 210 37 181
-105 4 38 83 163
-106 135 39 182 54
-107 177 193 117 41
-108 122 133 79 178
-109 89 103 84 43
-110 70 125 213 29
-111 147 214 236 228
-112 101 179 148 131
-113 189 72 184 119
-114 179 73 130 98
-115 122 27 194 75
-116 243 172 74 251
-117 66 56 180 107
-118 28 129 196 229
-119 198 113 190 183
-120 158 215 151 230
-121 212 18 184 97
-122 198 115 108 185
-123 199 90 124 186
-124 123 246 75 218
-125 110 187 23 200
-126 168 201 226 63
-127 188 57 61 175
-128 137 41 250 142
-129 177 189 171 118
-130 3 190 114 138
-131 112 234 139 30
-132 224 104 31 142
-133 187 61 108 32
-134 57 174 142 164
-135 143 191 106 41
-136 144 166 201 192
-137 223 236 128 183
-138 66 154 19 130
-139 99 156 131 197
-140 235 38 194 21
-141 242 103 169 195
-142 132 90 134 128
-143 244 135 163 196
-144 103 136 53 197
-145 48 16 20 240
-146 44 245 17 95
-147 111 24 169 54
-148 112 25 226 173
-149 178 26 171 73
-150 100 225 28 241
-151 45 48 228 120
-152 187 13 244 47
-153 192 96 239 54
-154 55 220 177 138
-155 176 56 222 102
-156 58 193 139 173
-157 221 60 228 20
-158 165 232 63 120
-159 100 17 84 64
-160 92 227 86 65
-161 66 2 94 87
-162 167 102 169 62
-163 143 68 25 105
-164 134 53 64 240
-165 242 245 158 71
-166 55 200 136 65
-167 243 80 225 162
-168 81 213 126 218
-169 147 82 162 141
-170 244 80 204 186
-171 88 209 149 129
-172 99 89 49 116
-173 156 91 148 83
-174 134 211 37 92
-175 71 127 97 207
-176 155 27 98 219
-177 154 223 107 129
-178 191 6 149 108
-179 199 13 112 114
-180 245 181 248 117
-181 180 104 216 32
-182 3 106 217 240
-183 231 137 51 119
-184 121 233 113 196
-185 122 101 246 250
-186 220 188 123 170
-187 133 125 237 152
-188 212 214 127 186
-189 242 113 129 197
-190 70 238 119 130
-191 178 135 38 252
-192 1 243 136 153
-193 156 39 107 218
-194 234 115 248 140
-195 90 236 141 251
-196 143 118 184 208
-197 144 189 237 139
-198 122 237 119 98
-199 123 179 81 224
-200 166 125 87 252
-201 12 136 126 247
-202 73 84 207 252
-203 56 18 216 208
-204 231 211 170 72
-205 1 227 97 241
-206 99 210 249 230
-207 222 91 202 175
-208 47 203 196 219
-209 79 213 171 238
-210 59 82 104 206
-211 88 5 204 174
-212 121 188 246 76
-213 110 209 14 168
-214 111 188 15 49
-215 82 225 229 120
-216 221 181 203 43
-217 232 24 182 30
-218 124 168 193 8
-219 176 92 96 208
-220 154 235 229 186
-221 157 83 216 42
-222 155 46 249 207
-223 177 137 50 86
-224 132 199 234 241
-225 167 215 150 250
-226 57 126 148 250
-227 232 58 160 205
-228 111 157 151 239
-229 220 215 52 118
-230 78 237 206 120
-231 235 94 204 183
-232 158 40 227 217
-233 247 184 9 240
-234 15 224 194 131
-235 77 220 231 140
-236 111 68 137 195
-237 187 198 197 230
-238 209 89 190 40
-239 81 228 98 153
-240 145 233 182 164
-241 22 224 150 205
-242 165 189 26 141
-243 167 192 116 7
-244 143 78 170 152
-245 165 45 146 180
-246 100 124 212 185
-247 233 201 93 76
-248 12 180 194 85
-249 222 4 206 251
-250 225 226 128 185
-251 71 116 249 195
-252 200 191 202 31
0

**************