[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 252, 42 ] =
UG(ATD[252,70]).
(I) Following is a form readable by MAGMA:
g:=Graph<252|{ {36, 37}, {52, 53}, {118, 119}, {146, 147}, {160, 161}, {1, 3},
{116, 118}, {124, 126}, {165, 167}, {1, 2}, {201, 202}, {81, 82}, {57, 58}, {4,
7}, {200, 204}, {234, 238}, {227, 231}, {3, 6}, {2, 4}, {123, 125}, {2, 5},
{234, 237}, {226, 229}, {176, 183}, {146, 149}, {5, 13}, {241, 249}, {35, 43},
{7, 15}, {6, 14}, {132, 140}, {180, 189}, {3, 8}, {242, 249}, {7, 12}, {197,
201}, {4, 9}, {245, 248}, {241, 252}, {212, 217}, {18, 31}, {16, 29}, {6, 11},
{86, 88}, {245, 251}, {242, 252}, {87, 89}, {166, 168}, {5, 10}, {228, 235},
{212, 219}, {180, 187}, {17, 30}, {160, 178}, {11, 24}, {224, 243}, {15, 28},
{32, 52}, {238, 250}, {228, 240}, {206, 218}, {197, 209}, {35, 55}, {33, 53},
{128, 148}, {12, 25}, {237, 248}, {14, 27}, {104, 126}, {237, 251}, {236, 250},
{224, 246}, {203, 221}, {13, 26}, {171, 188}, {45, 58}, {164, 179}, {8, 16},
{203, 211}, {12, 20}, {11, 19}, {10, 18}, {9, 17}, {137, 145}, {130, 155}, {238,
247}, {232, 242}, {102, 125}, {236, 247}, {201, 210}, {193, 218}, {173, 182},
{8, 21}, {232, 245}, {69, 88}, {10, 23}, {79, 81}, {198, 216}, {9, 22}, {70,
89}, {134, 153}, {24, 56}, {209, 241}, {31, 63}, {30, 62}, {29, 61}, {28, 60},
{27, 59}, {26, 58}, {25, 57}, {22, 55}, {137, 168}, {195, 225}, {214, 244}, {21,
54}, {194, 225}, {152, 188}, {199, 227}, {198, 226}, {158, 186}, {82, 119}, {80,
118}, {144, 182}, {64, 103}, {207, 232}, {205, 234}, {204, 235}, {143, 168},
{144, 183}, {68, 108}, {71, 111}, {70, 110}, {69, 109}, {150, 190}, {159, 183},
{65, 104}, {223, 246}, {216, 241}, {91, 114}, {67, 106}, {145, 184}, {141, 167},
{195, 233}, {149, 191}, {156, 182}, {15, 36}, {217, 242}, {194, 233}, {66, 105},
{28, 48}, {223, 243}, {217, 245}, {31, 51}, {30, 50}, {29, 49}, {157, 177}, {14,
35}, {199, 234}, {92, 113}, {85, 120}, {130, 172}, {205, 227}, {13, 34}, {219,
244}, {207, 224}, {79, 96}, {72, 103}, {68, 107}, {23, 56}, {64, 112}, {95,
111}, {81, 97}, {138, 186}, {139, 187}, {83, 98}, {132, 181}, {136, 185}, {142,
191}, {133, 183}, {19, 32}, {133, 182}, {141, 190}, {24, 44}, {219, 239}, {216,
236}, {27, 47}, {26, 46}, {25, 45}, {16, 37}, {215, 226}, {20, 33}, {18, 39},
{128, 181}, {1, 55}, {85, 99}, {139, 189}, {17, 38}, {131, 180}, {72, 112},
{213, 237}, {76, 116}, {75, 115}, {74, 114}, {73, 113}, {28, 37}, {214, 239},
{77, 116}, {69, 127}, {19, 40}, {213, 238}, {78, 117}, {23, 44}, {204, 240},
{20, 41}, {222, 227}, {209, 236}, {67, 126}, {65, 124}, {22, 43}, {157, 160},
{21, 42}, {80, 111}, {66, 125}, {131, 188}, {135, 184}, {57, 120}, {143, 206},
{59, 121}, {138, 200}, {142, 205}, {61, 121}, {63, 123}, {62, 122}, {136, 204},
{135, 194}, {60, 122}, {173, 228}, {141, 199}, {154, 208}, {128, 203}, {155,
208}, {143, 193}, {159, 209}, {132, 203}, {171, 228}, {147, 195}, {150, 199},
{179, 226}, {151, 198}, {1, 83}, {51, 96}, {187, 232}, {145, 194}, {151, 196},
{53, 97}, {55, 98}, {2, 84}, {129, 215}, {158, 200}, {159, 201}, {3, 84}, {178,
229}, {149, 205}, {60, 101}, {63, 102}, {61, 100}, {57, 99}, {62, 101}, {189,
230}, {187, 224}, {147, 207}, {167, 250}, {155, 197}, {185, 231}, {184, 230},
{59, 100}, {154, 197}, {32, 64}, {34, 66}, {33, 65}, {165, 196}, {189, 220},
{38, 68}, {51, 81}, {50, 80}, {47, 77}, {46, 76}, {39, 68}, {172, 207}, {43,
72}, {165, 198}, {164, 192}, {184, 220}, {44, 73}, {186, 223}, {178, 215}, {54,
83}, {44, 74}, {45, 75}, {36, 67}, {185, 222}, {177, 214}, {53, 82}, {144, 250},
{146, 248}, {161, 202}, {179, 216}, {56, 84}, {186, 214}, {181, 217}, {148,
248}, {40, 69}, {50, 95}, {48, 93}, {42, 71}, {177, 223}, {181, 219}, {41, 70},
{172, 195}, {49, 94}, {36, 84}, {170, 218}, {34, 83}, {185, 200}, {39, 85}, {43,
89}, {42, 88}, {38, 85}, {47, 92}, {161, 210}, {169, 218}, {54, 66}, {46, 91},
{52, 65}, {166, 211}, {45, 90}, {173, 213}, {56, 67}, {166, 221}, {4, 120}, {5,
120}, {169, 212}, {40, 86}, {171, 213}, {49, 79}, {48, 78}, {41, 87}, {170,
212}, {24, 152}, {127, 251}, {27, 156}, {77, 202}, {54, 190}, {125, 244}, {126,
247}, {19, 152}, {94, 210}, {34, 176}, {107, 249}, {21, 134}, {42, 190}, {108,
249}, {16, 134}, {92, 202}, {109, 251}, {37, 191}, {79, 210}, {105, 244}, {106,
247}, {14, 174}, {71, 230}, {13, 175}, {29, 191}, {6, 162}, {7, 163}, {10, 175},
{64, 229}, {11, 174}, {90, 252}, {72, 239}, {76, 235}, {8, 162}, {26, 176}, {9,
163}, {91, 235}, {89, 239}, {75, 252}, {111, 215}, {74, 243}, {73, 243}, {124,
192}, {88, 230}, {35, 156}, {18, 208}, {104, 171}, {110, 173}, {115, 176}, {127,
188}, {25, 221}, {109, 169}, {117, 177}, {98, 167}, {119, 178}, {48, 246}, {71,
129}, {70, 128}, {108, 170}, {23, 208}, {97, 166}, {94, 153}, {107, 172}, {77,
133}, {78, 134}, {20, 221}, {76, 133}, {74, 131}, {60, 246}, {73, 130}, {99,
168}, {127, 180}, {12, 192}, {103, 170}, {47, 225}, {15, 192}, {78, 129}, {75,
132}, {38, 233}, {102, 169}, {124, 179}, {33, 240}, {90, 139}, {52, 229}, {22,
196}, {95, 141}, {94, 140}, {51, 231}, {123, 175}, {17, 196}, {117, 160}, {93,
139}, {119, 161}, {80, 135}, {63, 231}, {91, 131}, {41, 240}, {122, 163}, {59,
225}, {82, 136}, {121, 162}, {93, 129}, {87, 138}, {114, 175}, {31, 193}, {92,
130}, {112, 174}, {86, 137}, {113, 174}, {62, 222}, {49, 211}, {106, 142}, {105,
140}, {123, 158}, {39, 193}, {58, 220}, {40, 206}, {50, 222}, {113, 157}, {114,
158}, {115, 159}, {117, 153}, {112, 157}, {32, 206}, {97, 143}, {96, 142}, {61,
211}, {100, 148}, {101, 149}, {102, 150}, {103, 151}, {104, 152}, {105, 153},
{106, 154}, {107, 155}, {121, 137}, {122, 138}, {46, 220}, {99, 145}, {98, 144},
{110, 156}, {116, 135}, {86, 162}, {87, 163}, {100, 146}, {101, 147}, {30, 233},
{93, 164}, {95, 165}, {96, 154}, {110, 148}, {108, 151}, {109, 150}, {90, 164},
{118, 136}, {115, 140} }>;
(II) A more general form is to represent the graph as the orbit of {36, 37}
under the group generated by the following permutations:
a: (4, 5)(6, 8)(7, 10)(9, 13)(11, 16)(12, 18)(14, 21)(15, 23)(17, 26)(19,
29)(20, 31)(22, 34)(24, 37)(25, 39)(27, 42)(28, 44)(30, 46)(32, 49)(33, 51)(35,
54)(36, 56)(38, 58)(40, 61)(41, 63)(43, 66)(45, 68)(47, 71)(48, 73)(50, 76)(52,
79)(53, 81)(55, 83)(57, 85)(59, 88)(60, 74)(62, 91)(64, 94)(65, 96)(69, 100)(70,
102)(72, 105)(75, 108)(77, 111)(78, 113)(80, 116)(86, 121)(87, 123)(89, 125)(90,
107)(92, 129)(93, 130)(95, 133)(101, 131)(103, 140)(104, 142)(106, 126)(109,
148)(110, 150)(112, 153)(114, 122)(115, 151)(117, 157)(124, 154)(127, 146)(128,
169)(132, 170)(134, 174)(138, 158)(139, 172)(141, 182)(143, 166)(144, 167)(147,
180)(149, 188)(152, 191)(155, 164)(156, 190)(159, 198)(161, 178)(163, 175)(165,
183)(171, 205)(173, 199)(176, 196)(179, 197)(181, 212)(184, 194)(185, 204)(187,
207)(189, 195)(192, 208)(193, 221)(201, 226)(202, 215)(203, 218)(206, 211)(209,
216)(210, 229)(213, 234)(220, 233)(222, 235)(225, 230)(227, 228)(231, 240)(239,
244)(243, 246)(248, 251)(249, 252) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 55)(3, 83)(4, 22)(5, 35)(6, 34)(7, 196)(8, 54)(10, 156)(11, 176)(12,
151)(13, 14)(15, 165)(16, 190)(17, 163)(18, 110)(19, 115)(20, 108)(23, 182)(24,
183)(25, 103)(26, 174)(27, 175)(28, 95)(29, 150)(30, 122)(31, 148)(32, 75)(33,
249)(36, 167)(37, 141)(38, 87)(39, 70)(40, 140)(41, 68)(42, 134)(43, 120)(44,
133)(45, 64)(46, 113)(47, 114)(48, 111)(49, 109)(50, 60)(51, 248)(52, 252)(53,
242)(56, 144)(57, 72)(58, 112)(59, 123)(61, 102)(63, 100)(65, 241)(66, 162)(67,
250)(69, 94)(71, 78)(73, 76)(74, 77)(79, 251)(80, 246)(81, 245)(82, 232)(84,
98)(85, 89)(86, 105)(88, 153)(90, 229)(91, 92)(93, 215)(96, 237)(97, 217)(99,
239)(101, 222)(104, 209)(106, 238)(107, 240)(116, 243)(117, 230)(118, 224)(119,
187)(121, 125)(124, 216)(126, 236)(127, 210)(128, 193)(130, 235)(131, 202)(132,
206)(135, 223)(136, 207)(137, 244)(138, 233)(139, 178)(142, 234)(143, 181)(145,
214)(146, 231)(147, 185)(149, 227)(152, 159)(154, 213)(155, 228)(157, 220)(158,
225)(160, 189)(161, 180)(164, 226)(166, 212)(168, 219)(169, 211)(170, 221)(171,
197)(172, 204)(173, 208)(177, 184)(186, 194)(188, 201)(191, 199)(192, 198)(195,
200)(203, 218)
c: (1, 2)(3, 84)(4, 83)(5, 55)(6, 56)(7, 54)(8, 36)(9, 34)(10, 35)(11, 24)(12,
190)(13, 22)(14, 23)(15, 21)(16, 37)(17, 176)(18, 156)(19, 152)(20, 150)(25,
141)(26, 196)(27, 208)(28, 134)(29, 191)(30, 115)(31, 110)(32, 188)(33, 109)(38,
183)(39, 182)(40, 104)(41, 102)(42, 192)(43, 175)(44, 174)(45, 95)(46, 151)(47,
155)(48, 78)(49, 149)(50, 75)(51, 148)(52, 127)(53, 251)(57, 167)(58, 165)(59,
154)(60, 153)(61, 142)(62, 140)(63, 70)(64, 131)(65, 69)(66, 163)(67, 162)(68,
133)(71, 164)(72, 114)(73, 113)(74, 112)(76, 108)(77, 107)(79, 146)(80, 252)(81,
248)(82, 245)(85, 144)(86, 126)(87, 125)(88, 124)(89, 123)(90, 111)(91, 103)(92,
130)(93, 129)(94, 101)(96, 100)(97, 237)(98, 120)(99, 250)(105, 122)(106,
121)(116, 249)(117, 246)(118, 242)(119, 232)(128, 231)(132, 222)(135, 241)(136,
217)(137, 247)(138, 244)(139, 215)(143, 213)(145, 236)(147, 210)(157, 243)(158,
239)(159, 233)(160, 224)(161, 207)(166, 234)(168, 238)(169, 240)(170, 235)(171,
206)(172, 202)(173, 193)(177, 223)(178, 187)(179, 230)(180, 229)(181, 185)(184,
216)(186, 214)(189, 226)(194, 209)(195, 201)(197, 225)(198, 220)(199, 221)(200,
219)(203, 227)(204, 212)(205, 211)(218, 228)
d: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 24)(17, 27)(18,
29)(20, 32)(22, 35)(23, 37)(25, 40)(26, 42)(28, 44)(30, 47)(31, 49)(33, 52)(34,
54)(36, 56)(38, 59)(39, 61)(41, 64)(45, 69)(46, 71)(48, 74)(50, 77)(51, 79)(57,
86)(58, 88)(60, 73)(62, 92)(63, 94)(68, 100)(70, 103)(72, 89)(75, 109)(76,
111)(78, 114)(80, 116)(85, 121)(87, 112)(90, 127)(91, 129)(93, 131)(95, 133)(99,
137)(101, 130)(102, 140)(104, 124)(105, 125)(107, 146)(108, 148)(110, 151)(113,
122)(115, 150)(117, 158)(119, 136)(120, 162)(123, 153)(128, 170)(132, 169)(134,
175)(138, 157)(139, 180)(141, 183)(142, 154)(143, 166)(144, 167)(147, 172)(149,
155)(152, 192)(156, 196)(159, 199)(160, 200)(161, 185)(163, 174)(164, 188)(165,
182)(171, 179)(173, 198)(176, 190)(177, 186)(178, 204)(181, 212)(191, 208)(193,
211)(197, 205)(201, 227)(202, 222)(203, 218)(206, 221)(209, 234)(210, 231)(213,
216)(215, 235)(220, 230)(225, 233)(226, 228)(229, 240)(236, 238)(237, 241)(242,
245)(243, 246)(248, 249)(251, 252)
C4[ 252, 42 ]
252
-1 55 2 3 83
-2 1 4 5 84
-3 1 6 84 8
-4 2 7 9 120
-5 2 13 10 120
-6 11 3 14 162
-7 12 4 15 163
-8 3 16 162 21
-9 22 4 17 163
-10 23 5 18 175
-11 24 6 19 174
-12 25 192 7 20
-13 34 26 5 175
-14 35 27 6 174
-15 36 192 28 7
-16 134 37 29 8
-17 38 30 9 196
-18 39 31 10 208
-19 11 40 152 32
-20 33 12 221 41
-21 134 8 42 54
-22 55 9 196 43
-23 44 56 10 208
-24 11 44 56 152
-25 12 45 221 57
-26 176 13 46 58
-27 156 14 47 59
-28 15 37 48 60
-29 191 16 49 61
-30 233 17 50 62
-31 193 18 51 63
-32 19 52 206 64
-33 20 53 240 65
-34 66 176 13 83
-35 55 156 14 43
-36 67 15 37 84
-37 36 191 16 28
-38 68 233 17 85
-39 68 193 18 85
-40 69 19 206 86
-41 70 20 240 87
-42 88 190 71 21
-43 22 89 35 72
-44 23 24 73 74
-45 90 25 58 75
-46 220 91 26 76
-47 77 92 27 225
-48 78 246 93 28
-49 79 211 94 29
-50 222 80 95 30
-51 231 81 96 31
-52 53 229 32 65
-53 33 82 52 97
-54 66 190 83 21
-55 22 1 35 98
-56 23 67 24 84
-57 99 25 58 120
-58 220 45 57 26
-59 121 100 27 225
-60 122 101 246 28
-61 121 100 211 29
-62 122 101 222 30
-63 231 123 102 31
-64 112 103 229 32
-65 33 124 104 52
-66 34 125 105 54
-67 56 36 126 106
-68 38 39 107 108
-69 88 127 40 109
-70 110 89 128 41
-71 111 129 42 230
-72 112 103 239 43
-73 44 243 113 130
-74 44 243 114 131
-75 132 45 115 252
-76 133 46 235 116
-77 133 47 202 116
-78 134 48 117 129
-79 210 81 49 96
-80 111 135 50 118
-81 79 82 51 97
-82 81 136 53 119
-83 1 34 54 98
-84 56 2 3 36
-85 99 38 39 120
-86 88 137 40 162
-87 89 138 41 163
-88 69 42 86 230
-89 70 239 43 87
-90 45 139 164 252
-91 46 114 235 131
-92 47 113 202 130
-93 48 139 129 164
-94 210 49 140 153
-95 165 111 50 141
-96 154 79 51 142
-97 143 166 81 53
-98 55 144 167 83
-99 57 145 168 85
-100 146 59 148 61
-101 147 60 149 62
-102 125 169 150 63
-103 170 72 151 64
-104 126 171 152 65
-105 66 244 140 153
-106 154 67 247 142
-107 155 68 172 249
-108 68 170 249 151
-109 69 169 150 251
-110 156 70 148 173
-111 80 71 215 95
-112 157 72 64 174
-113 157 92 73 174
-114 91 158 74 175
-115 176 159 140 75
-116 77 135 118 76
-117 78 177 160 153
-118 80 136 116 119
-119 178 82 161 118
-120 57 4 5 85
-121 59 137 61 162
-122 60 138 62 163
-123 125 158 63 175
-124 179 126 192 65
-125 66 123 244 102
-126 67 124 104 247
-127 188 69 180 251
-128 70 148 181 203
-129 78 71 93 215
-130 155 92 73 172
-131 188 91 180 74
-132 181 203 140 75
-133 77 182 183 76
-134 78 16 21 153
-135 80 116 194 184
-136 82 204 118 185
-137 121 145 168 86
-138 122 200 87 186
-139 187 90 189 93
-140 132 115 94 105
-141 199 167 190 95
-142 191 106 205 96
-143 168 193 206 97
-144 182 183 250 98
-145 99 137 194 184
-146 100 147 149 248
-147 101 146 195 207
-148 110 100 248 128
-149 101 146 191 205
-150 199 102 190 109
-151 198 103 108 196
-152 188 24 104 19
-153 134 94 105 117
-154 106 96 197 208
-155 107 130 197 208
-156 110 35 27 182
-157 177 112 113 160
-158 123 200 114 186
-159 209 201 115 183
-160 178 157 117 161
-161 210 202 160 119
-162 121 6 8 86
-163 122 7 9 87
-164 90 179 93 192
-165 198 167 95 196
-166 221 211 168 97
-167 165 250 141 98
-168 99 143 166 137
-169 102 212 218 109
-170 212 103 108 218
-171 188 213 104 228
-172 107 195 130 207
-173 110 213 182 228
-174 11 112 14 113
-175 13 123 114 10
-176 34 26 115 183
-177 157 223 214 117
-178 160 215 119 229
-179 124 226 216 164
-180 187 189 127 131
-181 132 128 217 219
-182 133 144 156 173
-183 176 133 144 159
-184 220 145 135 230
-185 231 200 222 136
-186 223 158 214 138
-187 232 180 224 139
-188 127 171 152 131
-189 220 180 139 230
-190 150 42 141 54
-191 37 149 29 142
-192 12 124 15 164
-193 143 39 31 218
-194 145 233 135 225
-195 233 147 225 172
-196 22 165 17 151
-197 154 209 155 201
-198 165 226 216 151
-199 234 150 227 141
-200 158 138 204 185
-201 210 202 159 197
-202 77 201 92 161
-203 132 221 211 128
-204 200 136 235 240
-205 234 149 227 142
-206 143 40 218 32
-207 232 147 224 172
-208 154 23 155 18
-209 159 236 197 241
-210 79 201 94 161
-211 166 49 203 61
-212 169 170 217 219
-213 171 237 238 173
-214 177 244 239 186
-215 111 178 226 129
-216 198 179 236 241
-217 242 212 245 181
-218 169 170 193 206
-219 244 212 181 239
-220 46 189 58 184
-221 166 25 203 20
-222 50 62 227 185
-223 177 243 246 186
-224 187 243 246 207
-225 47 59 194 195
-226 198 179 215 229
-227 231 199 222 205
-228 235 171 173 240
-229 178 226 52 64
-230 88 189 71 184
-231 51 227 63 185
-232 187 242 245 207
-233 38 194 30 195
-234 199 237 205 238
-235 91 204 228 76
-236 209 247 216 250
-237 234 213 248 251
-238 234 213 247 250
-239 89 214 72 219
-240 33 204 41 228
-241 209 216 249 252
-242 232 249 217 252
-243 223 224 73 74
-244 125 214 105 219
-245 232 248 217 251
-246 223 48 224 60
-247 126 236 106 238
-248 146 245 148 237
-249 242 107 108 241
-250 144 167 236 238
-251 245 127 237 109
-252 242 90 75 241
0