C4graphGraph forms for C4 [ 252, 44 ] = MG(Rmap(252,114){6,7|14}_18)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 252, 44 ] = MG(Rmap(252,114){6,7|14}_18).

(I) Following is a form readable by MAGMA:

g:=Graph<252|{ {244, 245}, {246, 247}, {1, 3}, {64, 66}, {157, 159}, {1, 2}, {97, 98}, {13, 14}, {9, 13}, {233, 237}, {1, 4}, {233, 236}, {96, 101}, {8, 13}, {2, 7}, {1, 6}, {235, 236}, {16, 23}, {8, 15}, {2, 5}, {2, 10}, {180, 188}, {7, 15}, {6, 14}, {5, 13}, {4, 12}, {3, 11}, {112, 120}, {19, 26}, {183, 190}, {182, 191}, {49, 56}, {20, 29}, {21, 31}, {240, 250}, {179, 185}, {81, 91}, {70, 76}, {54, 60}, {52, 62}, {39, 45}, {37, 47}, {3, 8}, {229, 238}, {208, 219}, {20, 31}, {67, 79}, {231, 235}, {193, 205}, {4, 9}, {33, 44}, {225, 239}, {17, 30}, {243, 252}, {199, 200}, {195, 204}, {14, 30}, {196, 212}, {170, 186}, {39, 55}, {108, 124}, {135, 151}, {10, 27}, {234, 251}, {228, 245}, {224, 241}, {204, 221}, {198, 215}, {78, 95}, {69, 84}, {41, 56}, {40, 57}, {34, 51}, {12, 29}, {5, 23}, {100, 118}, {107, 121}, {3, 16}, {203, 216}, {77, 94}, {41, 58}, {9, 26}, {7, 20}, {141, 158}, {38, 50}, {4, 17}, {231, 242}, {227, 246}, {72, 93}, {71, 82}, {46, 59}, {6, 19}, {99, 117}, {227, 245}, {103, 113}, {5, 18}, {239, 248}, {238, 249}, {68, 83}, {11, 28}, {136, 159}, {140, 155}, {163, 180}, {164, 179}, {166, 177}, {14, 22}, {207, 215}, {205, 213}, {168, 176}, {11, 18}, {232, 241}, {194, 219}, {32, 57}, {12, 22}, {230, 252}, {70, 92}, {109, 119}, {35, 56}, {225, 250}, {137, 149}, {8, 21}, {200, 213}, {197, 216}, {133, 152}, {6, 24}, {229, 251}, {169, 183}, {7, 25}, {165, 187}, {10, 21}, {237, 242}, {139, 148}, {162, 189}, {210, 242}, {92, 125}, {214, 247}, {201, 232}, {143, 174}, {214, 244}, {15, 44}, {219, 248}, {19, 48}, {139, 168}, {142, 173}, {145, 178}, {22, 50}, {220, 248}, {199, 227}, {198, 226}, {27, 63}, {26, 62}, {25, 61}, {24, 60}, {23, 51}, {20, 49}, {87, 114}, {30, 56}, {133, 163}, {138, 172}, {29, 58}, {221, 250}, {92, 116}, {217, 241}, {9, 32}, {218, 243}, {195, 234}, {90, 115}, {11, 34}, {192, 234}, {217, 243}, {206, 228}, {10, 33}, {15, 36}, {24, 52}, {220, 240}, {215, 251}, {213, 249}, {27, 55}, {26, 54}, {25, 53}, {22, 59}, {134, 171}, {72, 102}, {206, 224}, {12, 35}, {211, 252}, {83, 124}, {64, 111}, {25, 41}, {65, 112}, {88, 105}, {67, 113}, {86, 101}, {211, 224}, {91, 104}, {89, 106}, {148, 167}, {28, 40}, {216, 236}, {214, 226}, {16, 37}, {201, 252}, {77, 120}, {76, 121}, {30, 43}, {18, 39}, {129, 180}, {156, 169}, {28, 42}, {223, 233}, {222, 232}, {207, 249}, {205, 251}, {69, 115}, {68, 114}, {29, 43}, {17, 38}, {193, 246}, {87, 96}, {85, 98}, {157, 170}, {24, 32}, {194, 250}, {79, 119}, {150, 174}, {143, 182}, {223, 230}, {222, 231}, {212, 237}, {203, 242}, {192, 249}, {150, 175}, {68, 126}, {209, 235}, {202, 240}, {75, 113}, {69, 127}, {152, 162}, {19, 40}, {90, 97}, {64, 123}, {142, 181}, {21, 41}, {16, 45}, {65, 124}, {23, 42}, {18, 47}, {67, 125}, {17, 46}, {75, 116}, {27, 36}, {158, 222}, {128, 193}, {183, 246}, {181, 244}, {130, 195}, {132, 197}, {135, 198}, {137, 200}, {157, 220}, {160, 226}, {129, 194}, {182, 245}, {179, 240}, {155, 223}, {188, 248}, {61, 120}, {63, 122}, {154, 223}, {156, 218}, {62, 121}, {131, 196}, {151, 208}, {153, 222}, {162, 234}, {191, 247}, {165, 236}, {184, 241}, {167, 238}, {144, 218}, {190, 244}, {150, 220}, {151, 221}, {60, 119}, {166, 237}, {57, 117}, {175, 227}, {58, 118}, {45, 96}, {186, 247}, {175, 226}, {47, 98}, {149, 219}, {46, 97}, {174, 225}, {128, 207}, {136, 199}, {164, 235}, {57, 105}, {58, 106}, {61, 108}, {63, 110}, {52, 102}, {53, 103}, {130, 208}, {131, 209}, {134, 212}, {135, 213}, {138, 216}, {139, 217}, {48, 99}, {189, 238}, {62, 109}, {31, 75}, {49, 100}, {132, 210}, {185, 239}, {133, 211}, {146, 196}, {147, 197}, {50, 101}, {60, 107}, {147, 202}, {149, 204}, {146, 201}, {28, 64}, {31, 65}, {187, 229}, {186, 228}, {184, 230}, {177, 239}, {173, 243}, {54, 104}, {136, 214}, {137, 215}, {59, 91}, {188, 221}, {32, 66}, {171, 201}, {40, 74}, {37, 71}, {36, 70}, {33, 67}, {173, 206}, {167, 195}, {44, 73}, {191, 218}, {34, 68}, {172, 202}, {59, 93}, {35, 69}, {161, 199}, {55, 80}, {161, 198}, {48, 88}, {50, 90}, {49, 89}, {160, 200}, {53, 92}, {36, 79}, {44, 71}, {33, 76}, {189, 208}, {35, 78}, {38, 72}, {34, 77}, {52, 91}, {164, 212}, {51, 66}, {190, 207}, {48, 66}, {178, 192}, {176, 194}, {155, 232}, {42, 94}, {181, 193}, {53, 65}, {43, 95}, {144, 228}, {145, 229}, {37, 80}, {39, 82}, {61, 75}, {38, 81}, {166, 209}, {158, 233}, {165, 210}, {45, 85}, {63, 71}, {47, 87}, {46, 86}, {42, 83}, {178, 203}, {51, 74}, {163, 217}, {171, 209}, {168, 211}, {177, 202}, {156, 224}, {185, 197}, {184, 196}, {154, 231}, {54, 72}, {172, 210}, {55, 73}, {159, 225}, {43, 84}, {153, 230}, {125, 205}, {126, 206}, {123, 204}, {116, 203}, {127, 192}, {96, 160}, {97, 160}, {99, 162}, {126, 191}, {93, 159}, {102, 164}, {103, 165}, {106, 168}, {107, 169}, {98, 161}, {111, 172}, {125, 190}, {88, 156}, {101, 161}, {90, 158}, {89, 157}, {127, 187}, {80, 149}, {82, 151}, {110, 171}, {70, 128}, {108, 170}, {122, 188}, {123, 189}, {81, 150}, {100, 163}, {73, 129}, {74, 130}, {77, 132}, {79, 134}, {112, 186}, {122, 176}, {78, 133}, {84, 152}, {87, 155}, {86, 154}, {85, 153}, {94, 144}, {95, 145}, {104, 166}, {105, 167}, {76, 131}, {116, 187}, {94, 140}, {95, 141}, {100, 176}, {103, 178}, {88, 142}, {89, 143}, {110, 184}, {111, 185}, {80, 135}, {102, 177}, {117, 173}, {118, 174}, {74, 147}, {85, 140}, {83, 138}, {81, 136}, {78, 148}, {108, 182}, {109, 183}, {73, 146}, {86, 141}, {82, 137}, {104, 179}, {117, 169}, {118, 170}, {106, 180}, {107, 181}, {84, 139}, {114, 144}, {115, 145}, {109, 142}, {122, 146}, {123, 147}, {115, 154}, {114, 153}, {111, 130}, {110, 129}, {105, 152}, {113, 128}, {93, 175}, {120, 138}, {126, 140}, {127, 141}, {119, 131}, {99, 148}, {124, 132}, {112, 143}, {121, 134} }>;

(II) A more general form is to represent the graph as the orbit of {244, 245} under the group generated by the following permutations:

a: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 21)(16, 23)(17, 25)(19, 27)(22, 31)(24, 33)(26, 36)(28, 39)(30, 41)(32, 44)(34, 47)(35, 49)(37, 51)(38, 53)(40, 55)(42, 45)(43, 58)(46, 61)(48, 63)(50, 65)(52, 67)(54, 70)(57, 73)(59, 75)(60, 76)(62, 79)(64, 82)(66, 71)(68, 87)(69, 89)(72, 92)(74, 80)(77, 98)(78, 100)(81, 103)(83, 96)(84, 106)(85, 94)(86, 108)(88, 110)(90, 112)(91, 113)(93, 116)(95, 118)(97, 120)(99, 122)(101, 124)(102, 125)(104, 128)(105, 129)(107, 131)(109, 134)(111, 137)(115, 143)(117, 146)(119, 121)(123, 151)(126, 155)(127, 157)(130, 149)(132, 161)(133, 163)(135, 147)(136, 165)(138, 160)(139, 168)(141, 170)(142, 171)(144, 153)(145, 174)(148, 176)(150, 178)(152, 180)(154, 182)(156, 184)(158, 186)(159, 187)(162, 188)(164, 190)(166, 193)(167, 194)(169, 196)(172, 200)(173, 201)(175, 203)(177, 205)(179, 207)(181, 209)(183, 212)(185, 215)(189, 221)(191, 223)(192, 220)(195, 219)(197, 198)(199, 210)(202, 213)(204, 208)(206, 232)(211, 217)(214, 236)(216, 226)(218, 230)(222, 228)(224, 241)(225, 229)(227, 242)(231, 245)(233, 247)(234, 248)(235, 244)(237, 246)(238, 250)(239, 251)(240, 249)(243, 252)
b: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(15, 18)(17, 24)(20, 28)(21, 23)(22, 26)(25, 34)(27, 37)(29, 40)(30, 32)(31, 42)(33, 45)(35, 48)(36, 47)(38, 52)(39, 44)(41, 51)(43, 57)(46, 60)(49, 64)(50, 62)(53, 68)(54, 59)(55, 71)(56, 66)(58, 74)(61, 77)(63, 80)(65, 83)(67, 85)(69, 88)(70, 87)(72, 91)(73, 82)(75, 94)(76, 96)(78, 99)(79, 98)(81, 102)(84, 105)(86, 107)(89, 111)(90, 109)(92, 114)(93, 104)(95, 117)(97, 119)(100, 123)(101, 121)(103, 126)(106, 130)(108, 132)(110, 135)(112, 138)(113, 140)(115, 142)(116, 144)(118, 147)(122, 149)(125, 153)(127, 156)(128, 155)(129, 151)(131, 160)(133, 162)(134, 161)(136, 164)(137, 146)(139, 167)(141, 169)(143, 172)(145, 173)(150, 177)(154, 181)(157, 185)(158, 183)(159, 179)(163, 189)(165, 191)(166, 175)(168, 195)(170, 197)(171, 198)(174, 202)(176, 204)(178, 206)(180, 208)(182, 210)(184, 213)(186, 216)(187, 218)(188, 219)(190, 222)(192, 224)(193, 223)(194, 221)(196, 200)(199, 212)(201, 215)(203, 228)(205, 230)(207, 232)(209, 226)(211, 234)(214, 235)(217, 238)(220, 239)(225, 240)(227, 237)(229, 243)(231, 244)(233, 246)(236, 247)(241, 249)(242, 245)(251, 252)
c: (2, 6)(3, 4)(5, 14)(7, 19)(8, 9)(10, 24)(11, 12)(15, 26)(16, 17)(18, 22)(20, 40)(21, 32)(23, 30)(25, 48)(27, 52)(28, 29)(31, 57)(33, 60)(34, 35)(36, 62)(37, 38)(39, 59)(41, 66)(42, 43)(44, 54)(45, 46)(47, 50)(49, 74)(51, 56)(53, 88)(55, 91)(58, 64)(61, 99)(63, 102)(65, 105)(67, 107)(68, 69)(70, 109)(71, 72)(73, 104)(75, 117)(76, 119)(77, 78)(79, 121)(80, 81)(82, 93)(83, 84)(85, 86)(87, 90)(89, 130)(92, 142)(94, 95)(96, 97)(98, 101)(100, 147)(103, 156)(106, 111)(108, 162)(110, 164)(112, 167)(113, 169)(114, 115)(116, 173)(118, 123)(120, 148)(122, 177)(124, 152)(125, 181)(126, 127)(128, 183)(129, 179)(132, 133)(135, 136)(137, 175)(138, 139)(140, 141)(143, 195)(144, 145)(146, 166)(149, 150)(151, 159)(153, 154)(155, 158)(157, 208)(163, 197)(165, 224)(168, 172)(170, 189)(171, 212)(174, 204)(176, 202)(178, 218)(180, 185)(182, 234)(184, 235)(186, 238)(187, 206)(188, 239)(190, 193)(191, 192)(194, 240)(196, 209)(198, 199)(200, 226)(201, 237)(203, 243)(205, 244)(207, 246)(210, 211)(213, 214)(215, 227)(216, 217)(219, 220)(221, 225)(222, 223)(228, 229)(230, 231)(232, 233)(236, 241)(242, 252)(245, 251)(247, 249)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 252, 44 ]
252
-1 2 3 4 6
-2 1 5 7 10
-3 11 1 16 8
-4 1 12 17 9
-5 23 2 13 18
-6 1 24 14 19
-7 2 25 15 20
-8 13 3 15 21
-9 13 4 26 32
-10 33 2 27 21
-11 34 3 28 18
-12 22 35 4 29
-13 14 5 8 9
-14 22 13 6 30
-15 44 36 7 8
-16 23 45 3 37
-17 46 4 38 30
-18 11 47 5 39
-19 26 48 6 40
-20 49 7 29 31
-21 8 41 31 10
-22 12 14 59 50
-23 5 16 51 42
-24 60 6 52 32
-25 61 7 41 53
-26 62 19 9 54
-27 55 36 63 10
-28 11 40 42 64
-29 12 58 20 43
-30 56 14 17 43
-31 20 75 21 65
-32 66 24 57 9
-33 44 67 10 76
-34 11 77 68 51
-35 12 56 78 69
-36 79 15 70 27
-37 47 80 16 71
-38 81 17 50 72
-39 55 45 82 18
-40 57 28 19 74
-41 56 25 58 21
-42 23 28 83 94
-43 29 84 95 30
-44 33 15 71 73
-45 16 39 85 96
-46 59 17 86 97
-47 37 18 87 98
-48 66 88 99 19
-49 56 89 100 20
-50 22 90 101 38
-51 66 23 34 74
-52 24 91 102 62
-53 25 92 103 65
-54 26 60 104 72
-55 80 27 39 73
-56 35 49 30 41
-57 105 40 117 32
-58 29 106 41 118
-59 22 46 91 93
-60 24 107 119 54
-61 25 75 108 120
-62 121 26 52 109
-63 110 122 27 71
-64 66 111 123 28
-65 112 124 31 53
-66 48 51 64 32
-67 33 79 113 125
-68 34 114 126 83
-69 35 115 127 84
-70 36 92 128 76
-71 44 37 82 63
-72 102 38 93 54
-73 44 55 146 129
-74 147 40 51 130
-75 113 61 116 31
-76 33 121 70 131
-77 132 34 94 120
-78 133 35 148 95
-79 67 134 36 119
-80 55 135 37 149
-81 91 136 38 150
-82 71 137 39 151
-83 68 124 138 42
-84 69 139 152 43
-85 45 140 98 153
-86 154 46 101 141
-87 155 47 114 96
-88 156 48 105 142
-89 143 157 49 106
-90 158 115 50 97
-91 59 81 104 52
-92 70 125 116 53
-93 59 159 72 175
-94 77 144 140 42
-95 78 145 141 43
-96 45 101 160 87
-97 46 90 160 98
-98 47 161 85 97
-99 48 148 117 162
-100 176 49 118 163
-101 50 161 96 86
-102 177 72 52 164
-103 165 178 113 53
-104 166 91 179 54
-105 88 57 167 152
-106 89 58 168 180
-107 121 169 60 181
-108 124 170 61 182
-109 62 183 119 142
-110 171 63 129 184
-111 172 64 130 185
-112 143 65 120 186
-113 67 103 128 75
-114 144 68 87 153
-115 154 90 145 69
-116 187 92 203 75
-117 99 57 169 173
-118 100 58 170 174
-119 79 60 109 131
-120 77 112 61 138
-121 134 62 107 76
-122 176 188 146 63
-123 189 147 204 64
-124 132 83 108 65
-125 67 190 92 205
-126 68 191 140 206
-127 187 69 192 141
-128 113 70 193 207
-129 110 180 73 194
-130 111 74 195 208
-131 209 119 196 76
-132 77 210 124 197
-133 78 211 152 163
-134 121 79 212 171
-135 198 80 213 151
-136 199 81 159 214
-137 200 82 149 215
-138 83 172 216 120
-139 168 148 84 217
-140 155 126 94 85
-141 158 127 95 86
-142 88 181 173 109
-143 89 112 182 174
-144 114 94 228 218
-145 178 115 95 229
-146 122 201 73 196
-147 123 202 74 197
-148 99 78 167 139
-149 80 137 204 219
-150 220 81 174 175
-151 221 135 82 208
-152 133 105 84 162
-153 222 114 85 230
-154 231 223 115 86
-155 232 223 140 87
-156 88 169 224 218
-157 220 89 159 170
-158 90 222 233 141
-159 157 136 93 225
-160 200 226 96 97
-161 198 199 101 98
-162 99 189 234 152
-163 100 133 180 217
-164 102 179 212 235
-165 187 210 103 236
-166 209 177 104 237
-167 148 105 238 195
-168 176 211 106 139
-169 156 117 183 107
-170 157 118 108 186
-171 110 209 134 201
-172 111 210 202 138
-173 243 117 206 142
-174 143 225 150 118
-175 93 226 150 227
-176 100 122 168 194
-177 166 102 202 239
-178 145 103 192 203
-179 104 185 240 164
-180 188 106 129 163
-181 244 193 107 142
-182 143 245 191 108
-183 190 169 246 109
-184 110 196 230 241
-185 111 179 239 197
-186 112 170 247 228
-187 165 116 127 229
-188 122 221 180 248
-189 123 238 162 208
-190 244 125 183 207
-191 126 247 182 218
-192 178 234 127 249
-193 246 181 128 205
-194 176 129 250 219
-195 167 234 204 130
-196 146 212 184 131
-197 132 147 216 185
-198 135 215 226 161
-199 200 136 161 227
-200 199 213 137 160
-201 232 146 171 252
-202 177 147 172 240
-203 242 178 116 216
-204 221 123 149 195
-205 125 213 193 251
-206 224 126 173 228
-207 190 215 128 249
-208 189 151 130 219
-209 166 235 171 131
-210 132 165 242 172
-211 133 168 224 252
-212 134 237 196 164
-213 200 135 205 249
-214 244 136 247 226
-215 198 137 207 251
-216 203 236 138 197
-217 243 139 163 241
-218 144 243 156 191
-219 149 248 194 208
-220 157 248 150 240
-221 188 204 151 250
-222 231 232 158 153
-223 154 155 233 230
-224 156 211 206 241
-225 159 239 250 174
-226 198 214 160 175
-227 199 245 246 175
-228 144 245 206 186
-229 187 145 238 251
-230 223 184 153 252
-231 154 242 222 235
-232 155 222 201 241
-233 223 158 236 237
-234 192 162 195 251
-235 209 231 236 164
-236 165 233 235 216
-237 242 166 233 212
-238 167 189 249 229
-239 177 225 248 185
-240 220 179 202 250
-241 232 224 184 217
-242 231 210 203 237
-243 173 217 218 252
-244 190 245 181 214
-245 244 182 227 228
-246 247 193 183 227
-247 191 246 214 186
-248 220 188 239 219
-249 213 192 238 207
-250 221 225 194 240
-251 234 215 205 229
-252 243 211 201 230
0

**************