[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 252, 46 ] =
MG(Rmap(252,126){6,14|7}_18).
(I) Following is a form readable by MAGMA:
g:=Graph<252|{ {198, 199}, {246, 247}, {244, 245}, {1, 3}, {233, 235}, {1, 2},
{97, 98}, {13, 14}, {9, 13}, {1, 4}, {186, 191}, {96, 101}, {8, 13}, {2, 7}, {1,
6}, {235, 236}, {16, 23}, {8, 15}, {2, 5}, {2, 10}, {180, 188}, {177, 185}, {64,
72}, {49, 57}, {7, 15}, {6, 14}, {5, 13}, {4, 12}, {3, 11}, {112, 120}, {19,
26}, {39, 46}, {21, 31}, {240, 250}, {231, 237}, {70, 76}, {55, 61}, {53, 63},
{35, 41}, {3, 8}, {231, 236}, {208, 219}, {181, 190}, {20, 31}, {150, 157}, {33,
45}, {193, 205}, {67, 79}, {4, 9}, {81, 92}, {115, 125}, {225, 239}, {17, 30},
{243, 252}, {229, 234}, {195, 204}, {14, 30}, {108, 124}, {135, 151}, {10, 27},
{224, 241}, {204, 221}, {78, 95}, {69, 84}, {42, 59}, {12, 29}, {5, 23}, {199,
213}, {197, 215}, {41, 59}, {40, 58}, {100, 118}, {107, 121}, {3, 16}, {234,
249}, {228, 247}, {77, 94}, {47, 60}, {9, 26}, {7, 20}, {103, 115}, {232, 252},
{227, 247}, {4, 17}, {238, 251}, {196, 209}, {38, 51}, {37, 48}, {6, 19}, {140,
153}, {143, 154}, {34, 52}, {99, 117}, {5, 18}, {239, 248}, {230, 241}, {227,
244}, {166, 177}, {68, 83}, {11, 28}, {136, 159}, {163, 180}, {164, 179}, {14,
22}, {168, 176}, {72, 80}, {67, 91}, {11, 18}, {203, 210}, {194, 219}, {32, 57},
{12, 22}, {207, 213}, {205, 215}, {200, 210}, {172, 182}, {71, 93}, {32, 58},
{109, 119}, {225, 250}, {233, 242}, {40, 52}, {169, 181}, {137, 149}, {8, 21},
{37, 56}, {133, 152}, {6, 24}, {229, 251}, {165, 187}, {7, 25}, {10, 21}, {237,
242}, {139, 148}, {162, 189}, {141, 173}, {214, 246}, {211, 243}, {142, 174},
{15, 45}, {211, 241}, {19, 49}, {18, 48}, {23, 52}, {219, 248}, {214, 245}, {27,
56}, {139, 168}, {85, 113}, {220, 248}, {86, 114}, {22, 51}, {217, 252}, {202,
239}, {198, 227}, {28, 57}, {26, 63}, {24, 61}, {20, 50}, {133, 163}, {25, 62},
{221, 250}, {197, 226}, {9, 32}, {195, 234}, {11, 34}, {131, 170}, {22, 60},
{216, 242}, {206, 228}, {145, 187}, {10, 33}, {15, 36}, {213, 249}, {220, 240},
{215, 251}, {24, 53}, {26, 55}, {64, 110}, {192, 238}, {65, 111}, {12, 35},
{201, 230}, {91, 116}, {83, 124}, {71, 104}, {29, 50}, {25, 54}, {132, 171},
{29, 44}, {88, 105}, {157, 172}, {159, 174}, {30, 44}, {66, 112}, {25, 42}, {89,
106}, {86, 101}, {148, 167}, {142, 186}, {214, 226}, {207, 251}, {205, 249},
{16, 37}, {201, 252}, {193, 244}, {77, 120}, {76, 121}, {70, 115}, {68, 113},
{18, 39}, {129, 180}, {156, 169}, {222, 232}, {17, 38}, {222, 233}, {87, 96},
{85, 98}, {69, 114}, {30, 41}, {29, 42}, {28, 43}, {24, 32}, {223, 231}, {194,
250}, {79, 119}, {75, 115}, {150, 175}, {223, 230}, {217, 224}, {203, 242},
{192, 249}, {64, 122}, {218, 224}, {92, 102}, {69, 127}, {68, 126}, {65, 123},
{141, 183}, {152, 162}, {19, 40}, {90, 97}, {23, 43}, {209, 237}, {20, 41},
{206, 243}, {16, 46}, {210, 236}, {67, 125}, {66, 124}, {17, 47}, {21, 42},
{212, 235}, {75, 116}, {27, 36}, {128, 193}, {183, 246}, {181, 244}, {130, 195},
{158, 223}, {134, 196}, {135, 197}, {138, 200}, {129, 194}, {182, 245}, {179,
240}, {161, 226}, {154, 222}, {188, 248}, {155, 223}, {62, 120}, {63, 121},
{151, 208}, {153, 222}, {162, 234}, {190, 246}, {165, 236}, {185, 240}, {184,
241}, {167, 238}, {61, 119}, {191, 245}, {144, 218}, {150, 220}, {151, 221},
{166, 237}, {175, 227}, {59, 118}, {186, 247}, {175, 226}, {46, 96}, {47, 97},
{136, 198}, {137, 199}, {149, 219}, {58, 117}, {128, 207}, {164, 235}, {184,
232}, {54, 103}, {59, 106}, {48, 98}, {182, 228}, {63, 109}, {62, 108}, {49,
99}, {130, 208}, {131, 209}, {134, 212}, {135, 213}, {138, 216}, {139, 217},
{156, 206}, {53, 102}, {189, 238}, {58, 105}, {31, 75}, {50, 100}, {61, 107},
{51, 101}, {132, 210}, {133, 211}, {146, 196}, {178, 229}, {147, 202}, {149,
204}, {27, 64}, {146, 201}, {147, 200}, {28, 65}, {31, 66}, {136, 214}, {177,
239}, {173, 243}, {137, 215}, {55, 104}, {60, 92}, {38, 71}, {188, 221}, {171,
202}, {60, 93}, {33, 67}, {36, 70}, {170, 201}, {45, 73}, {167, 195}, {45, 72},
{191, 218}, {160, 197}, {34, 68}, {35, 69}, {160, 198}, {161, 199}, {48, 87},
{40, 65}, {51, 90}, {49, 88}, {56, 82}, {36, 79}, {55, 92}, {50, 89}, {33, 76},
{189, 208}, {54, 91}, {35, 78}, {34, 77}, {39, 72}, {56, 73}, {190, 207}, {185,
200}, {53, 71}, {176, 194}, {174, 220}, {166, 212}, {44, 95}, {171, 216}, {57,
74}, {155, 232}, {54, 66}, {144, 228}, {145, 229}, {37, 80}, {62, 75}, {43, 94},
{39, 82}, {164, 209}, {183, 193}, {38, 81}, {173, 218}, {158, 233}, {43, 83},
{44, 84}, {47, 86}, {179, 202}, {178, 203}, {163, 217}, {46, 85}, {187, 192},
{168, 211}, {156, 224}, {184, 196}, {157, 225}, {154, 231}, {165, 216}, {52,
74}, {170, 212}, {159, 225}, {153, 230}, {125, 205}, {126, 206}, {123, 204},
{116, 203}, {127, 192}, {96, 160}, {97, 160}, {99, 162}, {126, 191}, {93, 159},
{102, 164}, {103, 165}, {106, 168}, {98, 161}, {125, 190}, {88, 156}, {90, 158},
{89, 157}, {101, 161}, {109, 169}, {110, 170}, {111, 171}, {80, 149}, {82, 151},
{70, 128}, {122, 188}, {123, 189}, {81, 150}, {100, 163}, {73, 129}, {74, 130},
{77, 132}, {79, 134}, {112, 186}, {122, 176}, {78, 133}, {84, 152}, {87, 155},
{86, 154}, {85, 153}, {127, 178}, {94, 144}, {95, 145}, {104, 166}, {105, 167},
{76, 131}, {116, 187}, {95, 143}, {94, 140}, {100, 176}, {88, 141}, {90, 143},
{103, 178}, {110, 184}, {111, 185}, {80, 135}, {89, 142}, {102, 177}, {117,
173}, {118, 174}, {74, 147}, {83, 138}, {81, 136}, {78, 148}, {108, 182}, {109,
183}, {118, 172}, {73, 146}, {91, 128}, {87, 140}, {82, 137}, {104, 179}, {112,
172}, {117, 169}, {106, 180}, {107, 181}, {84, 139}, {113, 144}, {108, 142},
{114, 145}, {107, 141}, {122, 146}, {123, 147}, {113, 155}, {114, 158}, {111,
130}, {110, 129}, {127, 143}, {105, 152}, {93, 175}, {120, 138}, {126, 140},
{119, 131}, {99, 148}, {124, 132}, {121, 134} }>;
(II) A more general form is to represent the graph as the orbit of {198, 199}
under the group generated by the following permutations:
a: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 21)(16, 23)(17,
25)(19, 27)(22, 31)(24, 33)(26, 36)(28, 39)(29, 41)(30, 42)(32, 45)(34, 48)(35,
50)(37, 52)(38, 54)(40, 56)(43, 46)(44, 59)(47, 62)(49, 64)(51, 66)(53, 67)(55,
70)(57, 72)(58, 73)(60, 75)(61, 76)(63, 79)(65, 82)(68, 87)(69, 89)(71, 91)(74,
80)(77, 98)(78, 100)(81, 103)(83, 96)(84, 106)(85, 94)(86, 108)(88, 110)(90,
112)(92, 115)(93, 116)(95, 118)(97, 120)(99, 122)(101, 124)(102, 125)(104,
128)(105, 129)(107, 131)(109, 134)(111, 137)(113, 140)(114, 142)(117, 146)(119,
121)(123, 151)(126, 155)(127, 157)(130, 149)(132, 161)(133, 163)(135, 147)(136,
165)(138, 160)(139, 168)(141, 170)(143, 172)(144, 153)(145, 174)(148, 176)(150,
178)(152, 180)(154, 182)(156, 184)(158, 186)(159, 187)(162, 188)(164, 190)(166,
193)(167, 194)(169, 196)(171, 199)(173, 201)(175, 203)(177, 205)(179, 207)(181,
209)(183, 212)(185, 215)(189, 221)(191, 223)(192, 225)(195, 219)(197, 200)(198,
216)(202, 213)(204, 208)(206, 232)(210, 226)(211, 217)(214, 236)(218, 230)(220,
229)(222, 228)(224, 241)(227, 242)(231, 245)(233, 247)(234, 248)(235, 246)(237,
244)(238, 250)(239, 249)(240, 251)(243, 252) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 4)(3, 6)(5, 9)(7, 12)(8, 14)(10, 17)(11, 19)(15, 22)(16, 24)(18, 26)(20,
29)(21, 30)(23, 32)(25, 35)(27, 38)(28, 40)(31, 44)(33, 47)(34, 49)(36, 51)(37,
53)(39, 55)(41, 42)(43, 58)(45, 60)(46, 61)(48, 63)(52, 57)(54, 69)(56, 71)(62,
78)(64, 81)(66, 84)(67, 86)(68, 88)(70, 90)(72, 92)(73, 93)(75, 95)(76, 97)(77,
99)(79, 101)(80, 102)(82, 104)(83, 105)(85, 107)(87, 109)(89, 100)(91, 114)(94,
117)(96, 119)(98, 121)(103, 127)(106, 118)(108, 133)(110, 136)(111, 123)(112,
139)(113, 141)(115, 143)(116, 145)(120, 148)(122, 150)(124, 152)(125, 154)(126,
156)(128, 158)(129, 159)(130, 147)(131, 160)(132, 162)(134, 161)(135, 164)(137,
166)(138, 167)(140, 169)(142, 163)(144, 173)(146, 175)(149, 177)(151, 179)(153,
181)(155, 183)(157, 176)(165, 192)(168, 172)(170, 198)(171, 189)(174, 180)(182,
211)(184, 214)(185, 204)(186, 217)(188, 220)(190, 222)(191, 224)(193, 223)(194,
225)(195, 200)(196, 226)(197, 209)(199, 212)(201, 227)(202, 208)(203, 229)(205,
231)(207, 233)(210, 234)(213, 235)(215, 237)(216, 238)(219, 239)(221, 240)(228,
243)(230, 244)(232, 246)(236, 249)(241, 245)(242, 251)(247, 252)
c: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(15, 18)(17, 24)(20, 28)(21,
23)(22, 26)(25, 34)(27, 37)(29, 40)(30, 32)(31, 43)(33, 46)(35, 49)(36, 48)(38,
53)(39, 45)(41, 57)(42, 52)(44, 58)(47, 61)(50, 65)(51, 63)(54, 68)(55, 60)(59,
74)(62, 77)(64, 80)(66, 83)(67, 85)(69, 88)(70, 87)(73, 82)(75, 94)(76, 96)(78,
99)(79, 98)(81, 102)(84, 105)(86, 107)(89, 111)(90, 109)(91, 113)(93, 104)(95,
117)(97, 119)(100, 123)(101, 121)(103, 126)(106, 130)(108, 132)(110, 135)(112,
138)(114, 141)(115, 140)(116, 144)(118, 147)(122, 149)(125, 153)(127, 156)(128,
155)(129, 151)(131, 160)(133, 162)(134, 161)(136, 164)(137, 146)(139, 167)(142,
171)(143, 169)(145, 173)(150, 177)(154, 181)(157, 185)(158, 183)(159, 179)(163,
189)(165, 191)(166, 175)(168, 195)(170, 197)(172, 200)(174, 202)(176, 204)(178,
206)(180, 208)(182, 210)(184, 213)(186, 216)(187, 218)(188, 219)(190, 222)(192,
224)(193, 223)(194, 221)(196, 199)(198, 209)(201, 215)(203, 228)(205, 230)(207,
232)(211, 234)(212, 226)(214, 235)(217, 238)(220, 239)(225, 240)(227, 237)(229,
243)(231, 244)(233, 246)(236, 245)(241, 249)(242, 247)(251, 252)
C4[ 252, 46 ]
252
-1 2 3 4 6
-2 1 5 7 10
-3 11 1 16 8
-4 1 12 17 9
-5 23 2 13 18
-6 1 24 14 19
-7 2 25 15 20
-8 13 3 15 21
-9 13 4 26 32
-10 33 2 27 21
-11 34 3 28 18
-12 22 35 4 29
-13 14 5 8 9
-14 22 13 6 30
-15 45 36 7 8
-16 23 46 3 37
-17 47 4 38 30
-18 11 48 5 39
-19 26 49 6 40
-20 50 7 41 31
-21 8 31 42 10
-22 12 14 60 51
-23 5 16 52 43
-24 6 61 53 32
-25 7 62 42 54
-26 55 19 63 9
-27 56 36 64 10
-28 11 57 43 65
-29 44 12 50 42
-30 44 14 17 41
-31 66 20 75 21
-32 24 57 58 9
-33 45 67 10 76
-34 11 77 68 52
-35 12 78 69 41
-36 79 15 70 27
-37 56 80 48 16
-38 81 71 17 51
-39 46 82 72 18
-40 58 19 52 65
-41 35 59 30 20
-42 25 59 29 21
-43 23 28 83 94
-44 29 84 95 30
-45 33 15 72 73
-46 16 39 85 96
-47 60 17 86 97
-48 37 18 87 98
-49 88 99 57 19
-50 89 100 29 20
-51 22 90 101 38
-52 23 34 40 74
-53 24 102 71 63
-54 66 25 91 103
-55 26 92 104 61
-56 37 27 82 73
-57 49 28 74 32
-58 105 40 117 32
-59 106 41 118 42
-60 22 47 92 93
-61 55 24 107 119
-62 25 75 108 120
-63 121 26 53 109
-64 110 122 27 72
-65 111 123 28 40
-66 112 124 31 54
-67 33 79 91 125
-68 34 113 126 83
-69 35 114 127 84
-70 36 115 128 76
-71 38 93 104 53
-72 45 80 39 64
-73 45 56 146 129
-74 57 147 52 130
-75 115 116 62 31
-76 33 121 70 131
-77 132 34 94 120
-78 133 35 148 95
-79 67 134 36 119
-80 135 37 72 149
-81 92 136 38 150
-82 56 137 39 151
-83 68 124 138 43
-84 44 69 139 152
-85 46 113 98 153
-86 154 101 47 114
-87 155 48 96 140
-88 156 49 105 141
-89 157 50 106 142
-90 143 158 51 97
-91 67 116 128 54
-92 55 102 81 60
-93 60 71 159 175
-94 77 144 140 43
-95 44 143 78 145
-96 46 101 160 87
-97 90 47 160 98
-98 48 161 85 97
-99 49 148 117 162
-100 176 50 118 163
-101 51 161 96 86
-102 177 92 53 164
-103 165 178 115 54
-104 55 166 179 71
-105 88 167 58 152
-106 89 168 59 180
-107 121 181 61 141
-108 124 182 62 142
-109 169 183 63 119
-110 170 129 184 64
-111 171 130 185 65
-112 66 172 120 186
-113 144 155 68 85
-114 145 69 158 86
-115 70 103 125 75
-116 187 91 203 75
-117 99 58 169 173
-118 100 59 172 174
-119 79 61 109 131
-120 77 112 138 62
-121 134 63 107 76
-122 176 188 146 64
-123 189 147 204 65
-124 66 132 83 108
-125 67 190 115 205
-126 68 191 140 206
-127 143 178 69 192
-128 91 70 193 207
-129 110 180 73 194
-130 111 74 195 208
-131 209 170 119 76
-132 77 210 124 171
-133 78 211 152 163
-134 121 79 212 196
-135 80 213 151 197
-136 198 81 159 214
-137 199 82 149 215
-138 200 83 216 120
-139 168 148 84 217
-140 126 94 87 153
-141 88 183 107 173
-142 89 108 174 186
-143 154 90 127 95
-144 113 94 228 218
-145 187 114 95 229
-146 122 201 73 196
-147 123 200 202 74
-148 99 78 167 139
-149 80 137 204 219
-150 220 157 81 175
-151 221 135 82 208
-152 133 105 84 162
-153 222 85 140 230
-154 143 231 222 86
-155 232 113 223 87
-156 88 169 224 206
-157 89 225 150 172
-158 90 233 223 114
-159 136 93 225 174
-160 198 96 97 197
-161 199 101 226 98
-162 99 189 234 152
-163 100 133 180 217
-164 209 102 179 235
-165 187 103 236 216
-166 177 212 104 237
-167 148 105 238 195
-168 176 211 106 139
-169 156 181 117 109
-170 110 201 212 131
-171 132 111 202 216
-172 112 157 182 118
-173 243 117 141 218
-174 220 159 118 142
-175 93 226 150 227
-176 100 122 168 194
-177 166 102 239 185
-178 103 203 127 229
-179 202 104 240 164
-180 188 106 129 163
-181 244 190 169 107
-182 245 172 228 108
-183 246 193 141 109
-184 110 232 196 241
-185 111 177 200 240
-186 112 191 247 142
-187 165 145 192 116
-188 122 221 180 248
-189 123 238 162 208
-190 125 246 181 207
-191 245 126 218 186
-192 187 127 238 249
-193 244 128 183 205
-194 176 129 250 219
-195 167 234 204 130
-196 209 134 146 184
-197 135 160 215 226
-198 199 136 160 227
-199 198 213 137 161
-200 210 147 138 185
-201 146 170 230 252
-202 179 147 171 239
-203 242 210 178 116
-204 221 123 149 195
-205 125 193 215 249
-206 243 156 126 228
-207 190 213 128 251
-208 189 151 130 219
-209 237 196 131 164
-210 132 200 203 236
-211 133 243 168 241
-212 166 134 235 170
-213 199 135 249 207
-214 245 136 246 226
-215 137 205 251 197
-216 165 242 138 171
-217 224 139 163 252
-218 144 191 224 173
-219 149 248 194 208
-220 248 150 174 240
-221 188 204 151 250
-222 154 232 233 153
-223 231 155 158 230
-224 156 217 218 241
-225 157 159 239 250
-226 214 161 175 197
-227 198 244 247 175
-228 144 247 182 206
-229 145 178 234 251
-230 201 223 153 241
-231 154 223 236 237
-232 155 222 184 252
-233 242 222 158 235
-234 249 162 195 229
-235 233 212 236 164
-236 165 231 210 235
-237 209 231 242 166
-238 167 189 192 251
-239 177 202 225 248
-240 220 179 250 185
-241 211 224 184 230
-242 233 203 237 216
-243 211 173 206 252
-244 245 181 193 227
-245 244 191 214 182
-246 190 214 247 183
-247 246 227 228 186
-248 220 188 239 219
-249 234 213 192 205
-250 221 225 194 240
-251 215 238 207 229
-252 232 243 201 217
0