[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 252, 48 ] =
MG(Rmap(252,137){7,14|18}_18).
(I) Following is a form readable by MAGMA:
g:=Graph<252|{ {244, 245}, {250, 251}, {1, 3}, {1, 2}, {228, 231}, {212, 215},
{113, 117}, {209, 213}, {186, 190}, {1, 4}, {2, 7}, {240, 246}, {241, 247}, {1,
6}, {56, 63}, {2, 5}, {2, 10}, {7, 15}, {6, 14}, {5, 13}, {4, 12}, {3, 11},
{231, 238}, {101, 111}, {241, 251}, {3, 8}, {240, 251}, {180, 184}, {4, 9},
{241, 252}, {165, 168}, {164, 169}, {17, 31}, {194, 204}, {193, 207}, {150,
152}, {19, 28}, {245, 250}, {128, 143}, {138, 154}, {69, 84}, {76, 94}, {3, 16},
{195, 208}, {11, 24}, {7, 20}, {196, 208}, {4, 17}, {75, 94}, {12, 25}, {10,
31}, {8, 29}, {6, 19}, {105, 124}, {34, 52}, {227, 245}, {5, 18}, {201, 222},
{74, 93}, {35, 52}, {9, 30}, {128, 151}, {13, 21}, {199, 222}, {167, 189}, {7,
28}, {171, 176}, {137, 146}, {6, 27}, {198, 219}, {32, 61}, {10, 23}, {8, 21},
{5, 26}, {166, 185}, {33, 62}, {9, 22}, {12, 44}, {194, 226}, {70, 102}, {16,
48}, {15, 47}, {14, 46}, {13, 45}, {8, 41}, {203, 234}, {19, 50}, {10, 43},
{138, 168}, {9, 42}, {68, 103}, {31, 60}, {27, 56}, {23, 52}, {18, 49}, {73,
109}, {28, 57}, {223, 250}, {30, 59}, {66, 100}, {218, 252}, {11, 44}, {72,
111}, {70, 97}, {29, 58}, {20, 51}, {67, 106}, {86, 127}, {148, 189}, {64, 106},
{89, 115}, {76, 102}, {11, 32}, {220, 247}, {196, 239}, {82, 121}, {27, 48},
{148, 191}, {14, 34}, {15, 35}, {143, 163}, {12, 33}, {217, 244}, {26, 55}, {24,
53}, {94, 115}, {131, 174}, {220, 242}, {25, 54}, {195, 236}, {89, 105}, {223,
239}, {199, 247}, {137, 185}, {201, 248}, {13, 63}, {206, 252}, {201, 251},
{200, 250}, {67, 113}, {66, 112}, {16, 36}, {216, 236}, {22, 34}, {19, 39}, {18,
38}, {17, 37}, {67, 116}, {212, 227}, {211, 228}, {83, 100}, {135, 176}, {142,
182}, {154, 162}, {140, 181}, {206, 244}, {219, 225}, {205, 246}, {20, 40},
{134, 186}, {206, 243}, {64, 126}, {220, 226}, {65, 127}, {95, 97}, {145, 175},
{198, 249}, {205, 242}, {58, 122}, {59, 123}, {155, 218}, {174, 239}, {162,
227}, {62, 124}, {172, 238}, {63, 125}, {158, 221}, {21, 81}, {178, 246}, {48,
117}, {168, 237}, {50, 119}, {144, 213}, {147, 214}, {163, 230}, {22, 80}, {32,
103}, {191, 248}, {190, 249}, {49, 118}, {40, 111}, {33, 104}, {61, 116}, {39,
110}, {37, 108}, {35, 106}, {161, 232}, {34, 105}, {51, 120}, {38, 109}, {144,
219}, {60, 112}, {186, 246}, {129, 205}, {130, 206}, {131, 207}, {145, 220},
{147, 222}, {152, 213}, {14, 64}, {55, 121}, {15, 65}, {36, 107}, {179, 252},
{61, 114}, {146, 221}, {153, 214}, {20, 68}, {26, 74}, {25, 73}, {24, 72}, {23,
71}, {22, 70}, {21, 69}, {139, 218}, {183, 230}, {177, 224}, {16, 66}, {31, 77},
{30, 76}, {17, 67}, {51, 96}, {151, 196}, {132, 208}, {134, 210}, {135, 211},
{183, 226}, {190, 235}, {18, 68}, {188, 234}, {165, 243}, {164, 242}, {29, 75},
{142, 216}, {143, 217}, {37, 114}, {36, 124}, {160, 248}, {41, 112}, {185, 224},
{176, 233}, {129, 216}, {153, 192}, {156, 197}, {35, 121}, {177, 235}, {141,
215}, {42, 113}, {47, 116}, {189, 225}, {46, 115}, {180, 233}, {135, 218}, {154,
199}, {136, 214}, {174, 240}, {171, 245}, {170, 244}, {45, 114}, {178, 237},
{43, 74}, {54, 87}, {137, 232}, {130, 224}, {136, 234}, {155, 249}, {178, 209},
{179, 208}, {167, 195}, {182, 210}, {53, 80}, {170, 207}, {54, 81}, {173, 202},
{166, 193}, {59, 92}, {49, 88}, {169, 192}, {133, 236}, {128, 234}, {129, 235},
{160, 202}, {161, 203}, {56, 84}, {63, 83}, {130, 238}, {156, 240}, {157, 241},
{48, 93}, {171, 198}, {50, 95}, {148, 249}, {160, 205}, {32, 78}, {179, 221},
{33, 79}, {162, 204}, {49, 94}, {187, 212}, {131, 243}, {166, 214}, {136, 248},
{149, 229}, {170, 219}, {57, 75}, {173, 223}, {172, 222}, {159, 237}, {47, 92},
{132, 247}, {36, 80}, {169, 221}, {44, 88}, {39, 83}, {38, 82}, {37, 81}, {44,
89}, {173, 216}, {172, 217}, {46, 91}, {45, 88}, {145, 228}, {23, 97}, {30,
104}, {152, 238}, {153, 239}, {45, 90}, {184, 207}, {165, 210}, {164, 211},
{157, 229}, {175, 215}, {161, 217}, {177, 200}, {187, 194}, {24, 98}, {29, 103},
{28, 102}, {25, 99}, {150, 237}, {155, 224}, {40, 84}, {57, 69}, {43, 87}, {42,
86}, {41, 85}, {157, 225}, {156, 225}, {188, 193}, {181, 200}, {26, 100}, {41,
87}, {27, 101}, {146, 236}, {92, 223}, {86, 211}, {85, 210}, {98, 229}, {111,
232}, {58, 178}, {60, 180}, {59, 179}, {122, 242}, {123, 243}, {110, 231}, {107,
230}, {119, 231}, {120, 232}, {62, 175}, {117, 230}, {55, 163}, {125, 233},
{127, 235}, {126, 233}, {82, 202}, {84, 204}, {83, 203}, {95, 192}, {122, 229},
{42, 139}, {47, 142}, {40, 138}, {46, 141}, {99, 197}, {43, 140}, {55, 144},
{118, 209}, {60, 148}, {54, 159}, {58, 147}, {56, 145}, {124, 213}, {61, 151},
{125, 215}, {53, 158}, {62, 149}, {57, 146}, {108, 192}, {121, 212}, {38, 136},
{39, 137}, {112, 193}, {114, 195}, {116, 197}, {118, 199}, {120, 201}, {113,
194}, {117, 198}, {127, 204}, {126, 203}, {115, 196}, {125, 202}, {90, 226},
{91, 227}, {93, 228}, {52, 143}, {109, 209}, {51, 142}, {53, 139}, {123, 197},
{50, 141}, {119, 200}, {104, 169}, {106, 171}, {108, 173}, {96, 163}, {105,
170}, {109, 174}, {68, 128}, {71, 131}, {70, 130}, {69, 129}, {64, 133}, {73,
140}, {98, 167}, {97, 166}, {107, 172}, {119, 176}, {77, 133}, {79, 135}, {78,
134}, {86, 159}, {120, 177}, {85, 158}, {72, 132}, {103, 168}, {71, 151}, {74,
152}, {79, 157}, {78, 156}, {75, 153}, {95, 140}, {76, 154}, {77, 155}, {65,
150}, {66, 149}, {99, 187}, {108, 180}, {118, 175}, {126, 167}, {100, 191}, {98,
188}, {91, 132}, {96, 191}, {101, 133}, {107, 138}, {88, 187}, {93, 190}, {122,
158}, {123, 159}, {89, 188}, {104, 141}, {96, 134}, {82, 181}, {90, 189}, {85,
185}, {87, 186}, {101, 139}, {102, 150}, {71, 182}, {73, 184}, {99, 144}, {65,
181}, {80, 165}, {81, 164}, {79, 184}, {78, 183}, {90, 160}, {91, 161}, {77,
182}, {110, 149}, {110, 147}, {92, 162}, {72, 183} }>;
(II) A more general form is to represent the graph as the orbit of {244, 245}
under the group generated by the following permutations:
a: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 23)(16, 26)(17,
28)(19, 31)(22, 35)(24, 38)(25, 40)(27, 43)(29, 45)(30, 47)(32, 49)(33, 51)(34,
52)(36, 55)(37, 57)(39, 60)(41, 63)(42, 65)(44, 68)(46, 71)(48, 74)(50, 77)(53,
82)(54, 84)(56, 87)(58, 90)(59, 92)(61, 94)(62, 96)(64, 97)(66, 100)(67,
102)(69, 81)(70, 106)(72, 109)(73, 111)(75, 114)(76, 116)(78, 118)(79, 120)(80,
121)(83, 112)(85, 125)(86, 127)(88, 103)(89, 128)(91, 131)(95, 133)(98, 136)(99,
138)(101, 140)(104, 142)(105, 143)(107, 144)(108, 146)(110, 148)(113, 150)(115,
151)(117, 152)(119, 155)(122, 160)(123, 162)(124, 163)(126, 166)(129, 164)(130,
171)(132, 174)(134, 175)(135, 177)(137, 180)(139, 181)(141, 182)(145, 186)(147,
189)(149, 191)(153, 195)(154, 197)(156, 199)(157, 201)(158, 202)(159, 204)(161,
207)(165, 212)(167, 214)(168, 187)(169, 216)(170, 217)(172, 219)(173, 221)(176,
224)(178, 226)(179, 223)(183, 209)(184, 232)(185, 233)(188, 234)(190, 228)(192,
236)(193, 203)(194, 237)(198, 238)(200, 218)(205, 242)(206, 245)(208, 239)(210,
215)(211, 235)(213, 230)(220, 246)(222, 225)(227, 243)(229, 248)(231, 249)(240,
247)(241, 251)(250, 252) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 6)(3, 4)(5, 14)(7, 19)(8, 9)(10, 27)(11, 12)(13, 34)(15, 39)(16, 17)(18,
46)(20, 50)(21, 22)(23, 56)(24, 25)(26, 64)(29, 30)(31, 48)(32, 33)(35, 83)(36,
37)(38, 91)(40, 95)(41, 42)(43, 101)(45, 105)(47, 110)(49, 115)(51, 119)(52,
63)(53, 54)(55, 126)(57, 102)(58, 59)(60, 117)(61, 62)(65, 137)(66, 67)(68,
141)(69, 70)(71, 145)(72, 73)(74, 133)(75, 76)(77, 93)(78, 79)(80, 81)(82,
161)(84, 97)(85, 86)(87, 139)(88, 89)(90, 170)(92, 147)(96, 176)(98, 99)(100,
106)(103, 104)(107, 108)(109, 132)(111, 140)(112, 113)(114, 124)(116, 149)(118,
196)(120, 200)(121, 203)(122, 123)(125, 143)(127, 185)(128, 215)(129, 130)(131,
220)(134, 135)(136, 227)(138, 192)(142, 231)(144, 167)(146, 150)(148, 198)(151,
175)(152, 236)(153, 154)(155, 190)(156, 157)(158, 159)(160, 244)(162, 214)(163,
233)(164, 165)(166, 204)(168, 169)(171, 191)(172, 173)(174, 247)(178, 179)(180,
230)(181, 232)(182, 228)(183, 184)(186, 218)(187, 188)(189, 219)(193, 194)(195,
213)(197, 229)(199, 239)(201, 250)(202, 217)(205, 206)(207, 226)(208, 209)(210,
211)(212, 234)(216, 238)(221, 237)(222, 223)(224, 235)(240, 241)(242, 243)(245,
248)(246, 252)
c: (2, 4)(3, 6)(5, 9)(7, 12)(8, 14)(10, 17)(11, 19)(13, 22)(15, 25)(16, 27)(18,
30)(20, 33)(21, 34)(23, 37)(24, 39)(26, 42)(28, 44)(29, 46)(32, 50)(35, 54)(36,
56)(38, 59)(40, 62)(41, 64)(43, 67)(45, 70)(47, 73)(49, 76)(51, 79)(52, 81)(53,
83)(55, 86)(57, 89)(58, 91)(60, 77)(61, 95)(63, 80)(65, 99)(66, 101)(68,
104)(69, 105)(71, 108)(72, 110)(74, 113)(75, 115)(78, 119)(82, 123)(84, 124)(85,
126)(87, 106)(88, 102)(90, 130)(92, 109)(93, 117)(96, 135)(97, 114)(98,
137)(100, 139)(103, 141)(107, 145)(111, 149)(112, 133)(116, 140)(118, 154)(120,
157)(121, 159)(122, 161)(125, 165)(127, 144)(128, 169)(129, 170)(131, 173)(132,
147)(134, 176)(136, 179)(138, 175)(142, 184)(143, 164)(146, 188)(148, 155)(150,
187)(151, 192)(152, 194)(153, 196)(156, 200)(158, 203)(160, 206)(162, 209)(163,
211)(166, 195)(167, 185)(168, 215)(171, 186)(172, 220)(174, 223)(177, 225)(178,
227)(180, 182)(181, 197)(183, 231)(189, 224)(190, 198)(191, 218)(193, 236)(201,
241)(202, 243)(204, 213)(205, 244)(207, 216)(208, 214)(210, 233)(212, 237)(217,
242)(219, 235)(221, 234)(222, 247)(226, 238)(228, 230)(229, 232)(240, 250)(245,
246)(248, 252)
C4[ 252, 48 ]
252
-1 2 3 4 6
-2 1 5 7 10
-3 11 1 16 8
-4 1 12 17 9
-5 2 13 26 18
-6 1 14 27 19
-7 2 15 28 20
-8 3 29 41 21
-9 22 4 30 42
-10 23 2 31 43
-11 44 24 3 32
-12 33 44 25 4
-13 45 5 63 21
-14 34 46 6 64
-15 35 47 7 65
-16 66 3 36 48
-17 67 4 37 31
-18 68 5 38 49
-19 39 6 28 50
-20 68 7 40 51
-21 13 69 81 8
-22 34 80 70 9
-23 71 52 97 10
-24 11 72 53 98
-25 99 12 73 54
-26 55 100 5 74
-27 56 101 48 6
-28 57 102 7 19
-29 58 103 8 75
-30 59 104 9 76
-31 77 60 17 10
-32 11 78 103 61
-33 12 79 104 62
-34 22 14 105 52
-35 121 15 106 52
-36 80 124 16 107
-37 81 114 17 108
-38 136 82 18 109
-39 110 137 83 19
-40 111 138 84 20
-41 112 8 85 87
-42 113 139 9 86
-43 74 140 10 87
-44 11 88 12 89
-45 88 13 90 114
-46 14 91 115 141
-47 15 92 116 142
-48 16 27 93 117
-49 88 94 18 118
-50 95 19 119 141
-51 96 20 120 142
-52 143 23 34 35
-53 24 80 158 139
-54 25 81 159 87
-55 121 144 26 163
-56 145 27 84 63
-57 69 146 28 75
-58 122 178 147 29
-59 123 179 92 30
-60 112 180 148 31
-61 114 116 151 32
-62 33 124 149 175
-63 56 13 125 83
-64 133 14 126 106
-65 15 181 127 150
-66 100 112 16 149
-67 113 17 116 106
-68 103 18 128 20
-69 57 84 129 21
-70 22 102 97 130
-71 23 182 151 131
-72 132 111 24 183
-73 25 140 184 109
-74 26 93 152 43
-75 57 94 29 153
-76 154 102 94 30
-77 133 155 182 31
-78 134 156 183 32
-79 33 135 157 184
-80 22 165 36 53
-81 37 21 54 164
-82 121 202 38 181
-83 100 203 39 63
-84 56 69 204 40
-85 210 158 41 185
-86 211 159 127 42
-87 41 43 54 186
-88 44 187 45 49
-89 44 188 115 105
-90 45 189 160 226
-91 132 46 161 227
-92 47 223 59 162
-93 190 48 74 228
-94 49 115 75 76
-95 192 50 140 97
-96 134 191 51 163
-97 23 166 70 95
-98 188 24 167 229
-99 187 144 25 197
-100 66 26 191 83
-101 111 133 27 139
-102 70 28 150 76
-103 68 168 29 32
-104 33 169 30 141
-105 34 89 124 170
-106 67 35 171 64
-107 36 138 172 230
-108 37 180 192 173
-109 209 38 73 174
-110 231 147 39 149
-111 232 101 72 40
-112 66 60 193 41
-113 67 117 194 42
-114 45 37 61 195
-115 89 46 94 196
-116 67 47 61 197
-117 198 113 48 230
-118 209 199 49 175
-119 176 231 200 50
-120 177 232 201 51
-121 55 35 212 82
-122 242 58 158 229
-123 243 59 159 197
-124 36 213 105 62
-125 233 202 215 63
-126 167 233 203 64
-127 235 204 86 65
-128 143 68 234 151
-129 69 235 205 216
-130 70 224 238 206
-131 243 71 174 207
-132 91 247 72 208
-133 77 101 236 64
-134 78 210 96 186
-135 176 79 211 218
-136 234 38 214 248
-137 232 146 39 185
-138 154 168 40 107
-139 101 42 53 218
-140 181 73 95 43
-141 46 104 50 215
-142 47 182 51 216
-143 128 52 217 163
-144 55 99 213 219
-145 220 56 228 175
-146 221 57 137 236
-147 110 222 58 214
-148 189 191 60 249
-149 66 110 62 229
-150 102 237 152 65
-151 71 61 128 196
-152 213 150 238 74
-153 192 214 239 75
-154 199 138 162 76
-155 77 224 249 218
-156 78 225 240 197
-157 79 225 229 241
-158 122 221 85 53
-159 123 237 86 54
-160 90 202 248 205
-161 232 91 203 217
-162 154 92 204 227
-163 55 143 96 230
-164 242 211 81 169
-165 210 243 80 168
-166 214 193 97 185
-167 189 126 195 98
-168 165 103 138 237
-169 221 104 192 164
-170 244 105 207 219
-171 176 198 245 106
-172 222 238 107 217
-173 223 202 216 108
-174 239 240 109 131
-175 145 215 62 118
-176 233 135 171 119
-177 200 224 235 120
-178 209 58 246 237
-179 221 59 208 252
-180 233 60 184 108
-181 200 82 140 65
-182 77 210 71 142
-183 78 72 226 230
-184 79 180 73 207
-185 166 224 137 85
-186 134 190 246 87
-187 88 99 212 194
-188 89 234 193 98
-189 90 167 148 225
-190 235 93 249 186
-191 100 148 248 96
-192 169 95 108 153
-193 166 188 112 207
-194 187 113 204 226
-195 167 114 236 208
-196 115 151 239 208
-197 99 123 156 116
-198 171 117 249 219
-199 154 222 247 118
-200 177 181 250 119
-201 222 248 251 120
-202 125 82 160 173
-203 234 126 83 161
-204 127 84 194 162
-205 242 246 160 129
-206 243 244 130 252
-207 170 193 184 131
-208 132 179 195 196
-209 178 213 118 109
-210 165 134 182 85
-211 135 228 86 164
-212 121 187 215 227
-213 209 144 124 152
-214 166 136 147 153
-215 212 125 141 175
-216 236 129 173 142
-217 143 244 161 172
-218 155 135 139 252
-219 198 144 170 225
-220 242 145 247 226
-221 146 179 158 169
-222 199 201 147 172
-223 92 173 239 250
-224 155 177 130 185
-225 156 189 157 219
-226 220 90 183 194
-227 91 212 245 162
-228 231 145 211 93
-229 122 157 149 98
-230 117 183 107 163
-231 110 238 228 119
-232 111 137 161 120
-233 176 125 180 126
-234 188 136 203 128
-235 177 190 127 129
-236 133 146 216 195
-237 178 168 159 150
-238 231 172 130 152
-239 223 174 196 153
-240 156 246 174 251
-241 157 247 251 252
-242 220 122 205 164
-243 165 123 206 131
-244 245 170 206 217
-245 244 171 227 250
-246 178 205 240 186
-247 132 220 199 241
-248 201 136 191 160
-249 198 155 190 148
-250 200 223 245 251
-251 201 250 240 241
-252 179 206 218 241
0