C4graphGraph forms for C4 [ 252, 49 ] = MG(Rmap(252,161){9,14|14}_14)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 252, 49 ] = MG(Rmap(252,161){9,14|14}_14).

(I) Following is a form readable by MAGMA:

g:=Graph<252|{ {138, 139}, {1, 3}, {249, 251}, {236, 238}, {173, 175}, {92, 94}, {104, 106}, {125, 127}, {145, 147}, {1, 2}, {140, 143}, {195, 199}, {241, 245}, {1, 4}, {242, 247}, {240, 245}, {235, 238}, {185, 188}, {2, 7}, {130, 132}, {242, 244}, {241, 247}, {224, 230}, {216, 222}, {208, 214}, {1, 6}, {210, 213}, {2, 5}, {2, 10}, {7, 15}, {6, 14}, {5, 13}, {4, 12}, {3, 11}, {132, 141}, {227, 234}, {133, 140}, {164, 174}, {3, 8}, {149, 153}, {4, 9}, {162, 172}, {165, 171}, {244, 251}, {79, 95}, {231, 246}, {235, 249}, {3, 16}, {11, 24}, {7, 20}, {32, 52}, {238, 250}, {232, 252}, {226, 246}, {100, 112}, {4, 17}, {239, 250}, {233, 252}, {229, 240}, {34, 55}, {12, 25}, {10, 31}, {8, 29}, {6, 19}, {5, 18}, {200, 223}, {165, 178}, {9, 30}, {108, 116}, {35, 58}, {229, 252}, {160, 186}, {239, 245}, {7, 28}, {193, 218}, {142, 146}, {230, 250}, {228, 248}, {6, 27}, {204, 209}, {10, 23}, {8, 21}, {163, 189}, {237, 243}, {202, 212}, {174, 176}, {5, 26}, {9, 22}, {204, 236}, {26, 59}, {192, 225}, {30, 63}, {28, 61}, {8, 42}, {24, 58}, {21, 55}, {20, 54}, {17, 51}, {16, 50}, {13, 47}, {12, 46}, {9, 43}, {29, 62}, {159, 187}, {10, 44}, {210, 244}, {87, 113}, {81, 119}, {19, 53}, {18, 52}, {11, 45}, {27, 60}, {222, 249}, {78, 102}, {211, 251}, {88, 112}, {73, 96}, {128, 170}, {158, 180}, {11, 32}, {220, 247}, {15, 36}, {219, 247}, {12, 33}, {14, 35}, {139, 166}, {149, 184}, {22, 56}, {23, 57}, {134, 168}, {143, 161}, {13, 34}, {197, 234}, {82, 125}, {75, 100}, {136, 167}, {77, 125}, {137, 185}, {147, 163}, {148, 164}, {154, 170}, {22, 36}, {208, 226}, {195, 241}, {64, 114}, {155, 169}, {29, 41}, {217, 237}, {16, 37}, {74, 127}, {18, 39}, {25, 47}, {213, 227}, {192, 246}, {129, 183}, {157, 171}, {17, 38}, {222, 233}, {196, 252}, {213, 237}, {203, 243}, {202, 242}, {207, 246}, {155, 161}, {156, 166}, {19, 40}, {66, 121}, {214, 234}, {217, 229}, {20, 41}, {130, 191}, {137, 180}, {157, 160}, {14, 48}, {205, 243}, {15, 49}, {132, 186}, {133, 187}, {142, 177}, {168, 233}, {186, 248}, {142, 205}, {187, 248}, {158, 221}, {62, 122}, {182, 240}, {159, 216}, {172, 235}, {160, 232}, {148, 221}, {129, 203}, {191, 245}, {190, 244}, {15, 68}, {163, 232}, {154, 209}, {28, 80}, {51, 127}, {50, 126}, {49, 125}, {14, 67}, {31, 82}, {136, 197}, {135, 201}, {189, 243}, {13, 66}, {63, 112}, {62, 113}, {30, 81}, {144, 223}, {152, 215}, {32, 112}, {51, 99}, {50, 98}, {49, 97}, {48, 96}, {34, 114}, {33, 113}, {38, 116}, {54, 100}, {46, 124}, {43, 121}, {42, 120}, {39, 117}, {24, 76}, {27, 79}, {26, 78}, {25, 77}, {155, 207}, {16, 69}, {18, 71}, {37, 115}, {45, 123}, {44, 122}, {17, 70}, {183, 224}, {131, 212}, {188, 228}, {36, 126}, {19, 72}, {23, 75}, {20, 73}, {40, 118}, {185, 231}, {183, 233}, {41, 119}, {152, 198}, {21, 74}, {190, 225}, {179, 236}, {31, 64}, {147, 204}, {33, 65}, {57, 89}, {129, 225}, {130, 226}, {40, 74}, {135, 228}, {53, 81}, {133, 225}, {134, 227}, {158, 251}, {189, 219}, {157, 250}, {172, 203}, {58, 82}, {138, 224}, {178, 216}, {53, 89}, {161, 205}, {137, 229}, {149, 249}, {56, 85}, {138, 231}, {179, 220}, {21, 101}, {47, 95}, {46, 94}, {45, 93}, {44, 92}, {43, 91}, {42, 90}, {31, 111}, {30, 110}, {29, 109}, {28, 108}, {27, 107}, {26, 106}, {25, 105}, {24, 104}, {23, 103}, {22, 102}, {128, 240}, {150, 230}, {48, 65}, {36, 86}, {37, 87}, {32, 83}, {151, 227}, {156, 232}, {33, 84}, {35, 85}, {180, 194}, {184, 207}, {169, 211}, {131, 248}, {148, 239}, {166, 218}, {140, 241}, {162, 223}, {154, 231}, {38, 88}, {176, 206}, {39, 89}, {152, 230}, {141, 242}, {72, 200}, {76, 206}, {92, 222}, {77, 201}, {104, 237}, {78, 200}, {105, 238}, {83, 219}, {85, 221}, {84, 220}, {94, 214}, {99, 235}, {100, 236}, {93, 215}, {43, 160}, {44, 161}, {109, 224}, {106, 228}, {45, 162}, {59, 171}, {60, 172}, {63, 174}, {80, 193}, {70, 215}, {68, 213}, {56, 170}, {86, 196}, {75, 217}, {65, 211}, {64, 210}, {48, 163}, {69, 214}, {62, 173}, {52, 167}, {49, 164}, {79, 218}, {51, 166}, {50, 165}, {67, 212}, {90, 194}, {93, 196}, {91, 193}, {91, 192}, {116, 239}, {54, 168}, {55, 169}, {71, 216}, {122, 218}, {115, 210}, {114, 208}, {126, 220}, {110, 202}, {127, 219}, {97, 198}, {103, 192}, {109, 197}, {110, 198}, {111, 199}, {123, 211}, {104, 193}, {106, 195}, {47, 133}, {98, 201}, {105, 194}, {107, 199}, {99, 206}, {111, 194}, {109, 195}, {107, 196}, {61, 141}, {103, 215}, {122, 202}, {108, 223}, {52, 128}, {54, 130}, {53, 129}, {40, 157}, {61, 136}, {42, 159}, {41, 158}, {90, 226}, {34, 152}, {57, 131}, {35, 153}, {103, 221}, {107, 209}, {113, 203}, {39, 156}, {60, 135}, {98, 217}, {115, 200}, {117, 201}, {121, 197}, {38, 155}, {59, 134}, {105, 212}, {46, 144}, {58, 132}, {120, 198}, {37, 154}, {85, 234}, {124, 190}, {84, 151}, {118, 181}, {114, 182}, {123, 191}, {80, 149}, {83, 150}, {97, 167}, {72, 143}, {67, 138}, {71, 142}, {69, 140}, {99, 170}, {111, 165}, {66, 137}, {70, 141}, {98, 169}, {101, 174}, {102, 173}, {126, 181}, {73, 135}, {89, 151}, {68, 139}, {93, 146}, {94, 145}, {96, 176}, {96, 178}, {101, 177}, {86, 131}, {124, 171}, {117, 173}, {69, 156}, {102, 191}, {118, 175}, {68, 159}, {79, 148}, {75, 144}, {101, 190}, {121, 162}, {76, 145}, {78, 147}, {108, 177}, {73, 150}, {77, 146}, {92, 188}, {120, 153}, {88, 187}, {116, 151}, {82, 183}, {115, 150}, {119, 146}, {65, 167}, {80, 182}, {119, 145}, {81, 182}, {90, 189}, {91, 179}, {110, 134}, {120, 144}, {95, 181}, {83, 184}, {60, 208}, {61, 209}, {117, 153}, {84, 185}, {87, 186}, {86, 184}, {97, 143}, {64, 175}, {123, 139}, {66, 176}, {67, 177}, {87, 164}, {59, 207}, {71, 179}, {70, 178}, {56, 205}, {74, 188}, {57, 206}, {88, 175}, {95, 168}, {63, 199}, {76, 181}, {55, 204}, {72, 180}, {124, 128}, {118, 136} }>;

(II) A more general form is to represent the graph as the orbit of {138, 139} under the group generated by the following permutations:

a: (2, 4)(3, 6)(5, 9)(7, 12)(8, 14)(10, 17)(11, 19)(13, 22)(15, 25)(16, 27)(18, 30)(20, 33)(21, 35)(23, 38)(24, 40)(26, 43)(28, 46)(29, 48)(31, 51)(32, 53)(34, 56)(36, 47)(37, 60)(39, 63)(41, 65)(42, 67)(44, 70)(45, 72)(49, 77)(50, 79)(52, 81)(54, 84)(55, 85)(57, 88)(58, 74)(59, 91)(61, 94)(62, 96)(64, 99)(66, 102)(68, 105)(69, 107)(71, 110)(73, 113)(75, 116)(76, 118)(78, 121)(80, 124)(82, 127)(83, 129)(86, 133)(87, 135)(89, 112)(90, 138)(92, 141)(93, 143)(95, 126)(97, 146)(98, 148)(100, 151)(101, 153)(103, 155)(104, 157)(106, 160)(108, 144)(109, 163)(111, 166)(114, 170)(115, 172)(117, 174)(119, 167)(120, 177)(122, 178)(123, 180)(128, 182)(130, 185)(131, 187)(132, 188)(134, 179)(136, 145)(137, 191)(139, 194)(140, 196)(142, 198)(147, 197)(149, 190)(150, 203)(152, 205)(154, 208)(156, 199)(158, 211)(159, 212)(161, 215)(162, 200)(164, 201)(165, 218)(168, 220)(169, 221)(171, 193)(173, 176)(175, 206)(183, 219)(184, 225)(186, 228)(189, 224)(192, 207)(195, 232)(202, 216)(204, 234)(209, 214)(210, 235)(213, 238)(217, 239)(222, 242)(226, 231)(227, 236)(229, 245)(230, 243)(233, 247)(237, 250)(241, 252)(244, 249)
b: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 23)(16, 26)(17, 28)(19, 31)(21, 34)(22, 36)(24, 39)(25, 41)(27, 44)(29, 47)(30, 49)(32, 52)(33, 54)(35, 57)(37, 59)(38, 61)(40, 64)(42, 66)(43, 68)(45, 71)(46, 73)(48, 75)(50, 78)(51, 80)(53, 82)(56, 86)(58, 89)(60, 92)(62, 95)(63, 97)(65, 100)(67, 103)(69, 106)(70, 108)(72, 111)(74, 114)(76, 117)(77, 119)(79, 122)(81, 125)(83, 128)(84, 130)(85, 131)(87, 134)(88, 136)(90, 137)(91, 139)(93, 142)(94, 135)(96, 144)(98, 147)(99, 149)(101, 152)(102, 126)(104, 156)(105, 158)(107, 161)(109, 133)(110, 164)(112, 167)(113, 168)(115, 171)(116, 141)(118, 175)(120, 176)(121, 159)(123, 179)(124, 150)(127, 182)(129, 183)(132, 151)(138, 192)(140, 195)(143, 199)(145, 201)(148, 202)(153, 206)(154, 207)(155, 209)(157, 210)(160, 213)(162, 216)(163, 217)(165, 200)(166, 193)(169, 204)(170, 184)(172, 222)(173, 181)(174, 198)(177, 215)(178, 223)(180, 194)(185, 226)(186, 227)(187, 197)(188, 208)(189, 229)(190, 230)(191, 220)(196, 205)(203, 233)(211, 236)(212, 221)(214, 228)(219, 240)(224, 225)(231, 246)(232, 237)(234, 248)(235, 249)(238, 251)(239, 242)(243, 252)(244, 250)(245, 247)
c: (2, 6)(3, 4)(5, 14)(7, 19)(8, 9)(10, 27)(11, 12)(13, 35)(15, 40)(16, 17)(18, 48)(20, 53)(21, 22)(23, 60)(24, 25)(26, 67)(28, 72)(29, 30)(31, 79)(32, 33)(34, 85)(36, 74)(37, 38)(39, 96)(41, 81)(42, 43)(44, 107)(45, 46)(47, 58)(49, 118)(50, 51)(52, 65)(54, 129)(55, 56)(57, 135)(59, 138)(61, 143)(62, 63)(64, 148)(66, 153)(68, 157)(69, 70)(71, 163)(73, 89)(75, 172)(76, 77)(78, 177)(80, 180)(82, 95)(83, 84)(86, 188)(87, 88)(90, 91)(92, 196)(93, 94)(97, 136)(98, 99)(100, 203)(101, 102)(103, 208)(104, 105)(106, 212)(108, 200)(109, 110)(111, 218)(112, 113)(114, 221)(115, 116)(117, 176)(120, 121)(122, 199)(123, 124)(125, 181)(126, 127)(128, 211)(130, 225)(131, 228)(132, 133)(134, 224)(137, 149)(139, 171)(140, 141)(142, 147)(144, 162)(145, 146)(150, 151)(152, 234)(154, 155)(156, 178)(158, 182)(159, 160)(161, 209)(164, 175)(165, 166)(168, 183)(169, 170)(173, 174)(179, 189)(184, 185)(186, 187)(190, 191)(192, 226)(193, 194)(195, 202)(197, 198)(201, 206)(204, 205)(207, 231)(210, 239)(213, 250)(214, 215)(216, 232)(217, 235)(219, 220)(222, 252)(227, 230)(229, 249)(236, 243)(237, 238)(240, 251)(241, 242)(244, 245)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 252, 49 ]
252
-1 2 3 4 6
-2 1 5 7 10
-3 11 1 16 8
-4 1 12 17 9
-5 2 13 26 18
-6 1 14 27 19
-7 2 15 28 20
-8 3 29 42 21
-9 22 4 30 43
-10 44 23 2 31
-11 45 24 3 32
-12 33 46 25 4
-13 66 34 47 5
-14 67 35 48 6
-15 68 36 49 7
-16 3 69 37 50
-17 4 70 38 51
-18 5 71 39 52
-19 6 72 40 53
-20 7 73 41 54
-21 55 101 8 74
-22 56 36 102 9
-23 57 103 75 10
-24 11 58 104 76
-25 77 12 47 105
-26 78 59 5 106
-27 79 60 6 107
-28 80 61 7 108
-29 62 8 41 109
-30 110 81 63 9
-31 111 82 64 10
-32 11 112 83 52
-33 12 113 84 65
-34 55 13 114 152
-35 14 58 85 153
-36 22 15 126 86
-37 154 16 115 87
-38 88 155 17 116
-39 89 156 18 117
-40 157 19 74 118
-41 158 29 20 119
-42 90 159 8 120
-43 121 91 160 9
-44 122 92 161 10
-45 11 123 93 162
-46 12 144 124 94
-47 133 13 25 95
-48 14 96 163 65
-49 15 125 97 164
-50 165 16 126 98
-51 99 166 17 127
-52 167 18 128 32
-53 89 81 19 129
-54 100 168 20 130
-55 34 169 204 21
-56 22 170 205 85
-57 23 89 206 131
-58 132 24 35 82
-59 134 26 171 207
-60 135 27 172 208
-61 209 136 28 141
-62 122 113 29 173
-63 199 112 30 174
-64 210 114 31 175
-65 33 167 211 48
-66 121 176 13 137
-67 177 14 212 138
-68 15 213 159 139
-69 156 16 214 140
-70 178 17 215 141
-71 179 18 216 142
-72 143 200 180 19
-73 135 150 96 20
-74 188 127 40 21
-75 23 100 144 217
-76 24 145 181 206
-77 25 146 201 125
-78 200 102 26 147
-79 27 148 95 218
-80 193 28 182 149
-81 182 30 53 119
-82 58 125 183 31
-83 150 184 32 219
-84 33 220 151 185
-85 56 221 35 234
-86 36 184 196 131
-87 113 37 164 186
-88 187 112 38 175
-89 57 39 151 53
-90 189 226 194 42
-91 179 192 193 43
-92 44 188 222 94
-93 45 146 215 196
-94 46 145 92 214
-95 79 47 168 181
-96 176 178 48 73
-97 143 198 167 49
-98 201 169 50 217
-99 235 170 51 206
-100 112 236 75 54
-101 177 190 174 21
-102 22 78 191 173
-103 23 221 192 215
-104 24 193 237 106
-105 25 212 194 238
-106 26 104 195 228
-107 209 199 27 196
-108 177 223 28 116
-109 224 29 195 197
-110 198 134 202 30
-111 165 199 194 31
-112 88 100 63 32
-113 33 203 62 87
-114 34 182 64 208
-115 210 200 37 150
-116 38 151 239 108
-117 201 39 173 153
-118 136 181 40 175
-119 145 146 81 41
-120 198 144 42 153
-121 66 162 43 197
-122 44 202 62 218
-123 45 211 191 139
-124 46 190 171 128
-125 77 49 82 127
-126 220 36 181 50
-127 125 51 74 219
-128 124 170 52 240
-129 203 225 183 53
-130 132 191 226 54
-131 57 212 248 86
-132 58 130 141 186
-133 187 47 225 140
-134 110 168 59 227
-135 201 60 73 228
-136 167 61 118 197
-137 66 180 185 229
-138 231 67 224 139
-139 166 68 123 138
-140 143 133 69 241
-141 132 242 70 61
-142 177 146 71 205
-143 72 161 140 97
-144 46 223 75 120
-145 147 94 119 76
-146 77 93 119 142
-147 78 145 204 163
-148 221 79 239 164
-149 80 249 184 153
-150 115 83 73 230
-151 89 116 84 227
-152 198 34 215 230
-153 35 149 117 120
-154 209 231 37 170
-155 169 38 161 207
-156 166 232 69 39
-157 160 171 40 250
-158 221 180 41 251
-159 187 68 216 42
-160 232 157 43 186
-161 44 143 155 205
-162 121 45 223 172
-163 232 189 48 147
-164 49 148 174 87
-165 111 178 50 171
-166 156 51 139 218
-167 136 52 97 65
-168 134 233 95 54
-169 55 155 211 98
-170 99 154 56 128
-171 165 124 157 59
-172 235 60 203 162
-173 102 62 117 175
-174 176 101 63 164
-175 88 118 173 64
-176 66 96 206 174
-177 67 101 108 142
-178 165 70 216 96
-179 220 91 71 236
-180 158 137 72 194
-181 126 95 118 76
-182 80 81 114 240
-183 233 224 82 129
-184 83 149 86 207
-185 231 188 137 84
-186 132 160 248 87
-187 88 133 159 248
-188 92 74 228 185
-189 243 90 163 219
-190 101 244 124 225
-191 123 102 245 130
-192 91 103 246 225
-193 80 91 104 218
-194 111 90 180 105
-195 199 106 109 241
-196 93 107 86 252
-197 121 234 136 109
-198 110 97 152 120
-199 111 63 107 195
-200 78 223 115 72
-201 77 135 117 98
-202 110 242 122 212
-203 243 113 172 129
-204 55 209 147 236
-205 56 243 161 142
-206 99 176 57 76
-207 155 59 246 184
-208 114 60 214 226
-209 154 61 204 107
-210 244 213 115 64
-211 123 169 251 65
-212 67 202 105 131
-213 210 68 237 227
-214 69 234 94 208
-215 70 103 93 152
-216 178 222 71 159
-217 237 75 229 98
-218 122 166 79 193
-219 189 247 83 127
-220 179 126 247 84
-221 103 158 148 85
-222 233 92 216 249
-223 144 200 162 108
-224 138 183 109 230
-225 133 190 192 129
-226 90 246 130 208
-227 134 234 213 151
-228 188 135 248 106
-229 137 217 240 252
-230 224 150 250 152
-231 154 246 138 185
-232 156 160 163 252
-233 222 168 183 252
-234 214 227 85 197
-235 99 172 238 249
-236 100 179 204 238
-237 243 213 104 217
-238 235 236 105 250
-239 245 148 116 250
-240 245 182 128 229
-241 245 247 140 195
-242 244 202 247 141
-243 189 203 237 205
-244 242 210 190 251
-245 191 239 240 241
-246 231 192 226 207
-247 220 242 219 241
-248 187 228 131 186
-249 222 235 149 251
-250 157 238 239 230
-251 211 244 158 249
-252 232 233 196 229
0

**************