C4graphGraph forms for C4 [ 252, 50 ] = MG(Rmap(252,177){9,18|14}_18)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 252, 50 ] = MG(Rmap(252,177){9,18|14}_18).

(I) Following is a form readable by MAGMA:

g:=Graph<252|{ {112, 113}, {176, 177}, {1, 3}, {212, 214}, {109, 111}, {1, 2}, {152, 155}, {57, 61}, {248, 252}, {242, 246}, {232, 236}, {219, 223}, {72, 76}, {1, 4}, {249, 252}, {67, 70}, {2, 7}, {105, 108}, {250, 252}, {1, 6}, {251, 252}, {2, 5}, {144, 151}, {2, 10}, {240, 248}, {194, 202}, {7, 15}, {6, 14}, {5, 13}, {4, 12}, {3, 11}, {97, 104}, {243, 250}, {197, 204}, {71, 77}, {241, 251}, {135, 141}, {163, 169}, {3, 8}, {212, 223}, {178, 185}, {85, 94}, {84, 95}, {130, 142}, {230, 234}, {150, 154}, {4, 9}, {247, 250}, {246, 251}, {245, 248}, {228, 233}, {208, 221}, {198, 203}, {36, 42}, {244, 251}, {77, 93}, {135, 151}, {164, 181}, {165, 180}, {225, 243}, {3, 16}, {44, 63}, {11, 24}, {7, 20}, {164, 183}, {4, 17}, {236, 249}, {34, 55}, {12, 25}, {10, 31}, {8, 29}, {6, 19}, {194, 212}, {206, 216}, {5, 18}, {224, 247}, {9, 30}, {110, 121}, {193, 217}, {206, 214}, {173, 180}, {227, 250}, {195, 218}, {103, 125}, {110, 116}, {128, 154}, {7, 28}, {234, 241}, {166, 189}, {108, 112}, {134, 154}, {6, 27}, {10, 23}, {8, 21}, {171, 181}, {5, 26}, {238, 241}, {9, 22}, {26, 58}, {65, 97}, {195, 226}, {8, 42}, {29, 63}, {28, 62}, {25, 59}, {24, 58}, {21, 55}, {20, 54}, {17, 51}, {16, 50}, {13, 47}, {12, 46}, {9, 43}, {64, 99}, {199, 227}, {153, 188}, {205, 232}, {10, 44}, {81, 119}, {27, 61}, {26, 60}, {19, 53}, {18, 52}, {11, 45}, {209, 246}, {222, 249}, {215, 240}, {210, 245}, {201, 225}, {221, 245}, {92, 117}, {219, 242}, {220, 246}, {11, 32}, {15, 36}, {72, 100}, {12, 33}, {196, 233}, {83, 126}, {14, 35}, {139, 166}, {22, 56}, {23, 57}, {150, 184}, {13, 34}, {214, 249}, {130, 179}, {138, 187}, {78, 124}, {137, 186}, {220, 239}, {216, 235}, {155, 168}, {16, 37}, {217, 236}, {18, 39}, {93, 107}, {213, 227}, {142, 184}, {17, 38}, {210, 229}, {79, 120}, {78, 118}, {204, 244}, {156, 166}, {157, 167}, {19, 40}, {148, 175}, {155, 160}, {87, 107}, {209, 237}, {20, 41}, {218, 231}, {202, 247}, {145, 172}, {14, 48}, {15, 49}, {159, 161}, {145, 174}, {143, 207}, {137, 200}, {175, 238}, {174, 239}, {172, 237}, {142, 207}, {147, 209}, {177, 243}, {152, 218}, {35, 96}, {170, 233}, {167, 228}, {165, 230}, {41, 109}, {182, 242}, {162, 230}, {163, 231}, {164, 224}, {189, 248}, {152, 222}, {178, 244}, {161, 230}, {169, 238}, {129, 201}, {130, 202}, {131, 203}, {132, 204}, {13, 68}, {35, 106}, {31, 86}, {29, 84}, {27, 82}, {25, 80}, {15, 70}, {14, 69}, {188, 247}, {30, 85}, {26, 81}, {44, 96}, {173, 225}, {47, 99}, {46, 98}, {45, 97}, {175, 226}, {184, 245}, {59, 117}, {171, 229}, {28, 83}, {58, 117}, {131, 211}, {163, 243}, {36, 117}, {46, 127}, {44, 125}, {42, 123}, {40, 121}, {38, 119}, {22, 68}, {33, 115}, {32, 114}, {37, 118}, {167, 244}, {45, 126}, {41, 122}, {141, 222}, {48, 100}, {191, 235}, {51, 103}, {50, 102}, {49, 101}, {146, 199}, {188, 233}, {165, 240}, {34, 116}, {16, 71}, {43, 124}, {24, 79}, {132, 211}, {140, 219}, {149, 194}, {62, 102}, {183, 239}, {17, 72}, {179, 234}, {23, 78}, {21, 76}, {19, 74}, {145, 200}, {156, 197}, {63, 101}, {131, 217}, {18, 73}, {183, 236}, {22, 77}, {148, 207}, {157, 198}, {52, 104}, {53, 105}, {186, 231}, {30, 64}, {181, 235}, {31, 65}, {20, 75}, {39, 120}, {158, 193}, {39, 71}, {56, 89}, {177, 208}, {133, 228}, {138, 235}, {32, 66}, {33, 67}, {128, 227}, {60, 88}, {132, 225}, {182, 211}, {136, 237}, {151, 242}, {171, 204}, {172, 203}, {54, 95}, {129, 232}, {139, 226}, {191, 213}, {180, 223}, {134, 234}, {173, 192}, {30, 112}, {31, 113}, {182, 199}, {28, 110}, {179, 193}, {29, 111}, {147, 224}, {24, 108}, {43, 95}, {42, 94}, {41, 93}, {40, 92}, {25, 109}, {144, 228}, {160, 213}, {187, 205}, {190, 200}, {189, 203}, {32, 87}, {43, 92}, {27, 99}, {159, 231}, {33, 88}, {137, 240}, {35, 89}, {138, 241}, {23, 107}, {153, 229}, {38, 91}, {170, 215}, {36, 90}, {59, 69}, {37, 91}, {21, 106}, {81, 208}, {56, 186}, {76, 207}, {87, 212}, {61, 185}, {73, 205}, {64, 197}, {86, 211}, {84, 209}, {75, 206}, {85, 210}, {111, 229}, {55, 187}, {89, 213}, {90, 214}, {101, 232}, {49, 160}, {55, 166}, {53, 164}, {51, 162}, {88, 202}, {50, 161}, {54, 165}, {123, 239}, {61, 168}, {52, 163}, {112, 237}, {115, 238}, {125, 224}, {56, 167}, {57, 153}, {96, 192}, {37, 135}, {107, 201}, {126, 221}, {127, 220}, {114, 215}, {102, 192}, {121, 223}, {40, 143}, {62, 150}, {116, 222}, {120, 210}, {98, 201}, {106, 193}, {108, 192}, {124, 208}, {114, 220}, {115, 221}, {47, 128}, {48, 159}, {45, 156}, {59, 138}, {57, 136}, {54, 135}, {52, 133}, {50, 131}, {48, 129}, {47, 158}, {104, 217}, {106, 219}, {114, 195}, {119, 198}, {101, 215}, {46, 157}, {58, 137}, {53, 134}, {49, 130}, {105, 218}, {113, 194}, {118, 197}, {62, 139}, {125, 200}, {120, 206}, {51, 132}, {60, 139}, {115, 196}, {122, 205}, {90, 226}, {34, 153}, {99, 216}, {38, 154}, {39, 155}, {60, 129}, {122, 199}, {102, 216}, {122, 196}, {123, 196}, {124, 195}, {69, 133}, {77, 140}, {113, 176}, {84, 150}, {85, 151}, {67, 128}, {80, 147}, {73, 143}, {83, 149}, {82, 148}, {82, 149}, {68, 142}, {70, 140}, {116, 190}, {80, 156}, {65, 140}, {66, 143}, {86, 152}, {66, 141}, {127, 176}, {121, 169}, {89, 136}, {104, 185}, {79, 157}, {87, 133}, {90, 136}, {123, 168}, {94, 134}, {118, 174}, {70, 159}, {74, 144}, {75, 145}, {105, 178}, {78, 146}, {126, 162}, {98, 191}, {127, 161}, {97, 190}, {119, 168}, {91, 187}, {92, 188}, {93, 189}, {94, 190}, {95, 191}, {88, 185}, {91, 186}, {72, 170}, {80, 180}, {83, 183}, {82, 182}, {81, 181}, {71, 175}, {64, 169}, {68, 173}, {66, 171}, {74, 160}, {65, 170}, {73, 162}, {69, 174}, {96, 141}, {86, 184}, {67, 172}, {109, 158}, {98, 148}, {100, 146}, {100, 147}, {103, 144}, {63, 198}, {103, 158}, {74, 176}, {75, 177}, {111, 149}, {79, 179}, {110, 146}, {76, 178} }>;

(II) A more general form is to represent the graph as the orbit of {112, 113} under the group generated by the following permutations:

a: (2, 4)(3, 6)(5, 9)(7, 12)(8, 14)(10, 17)(11, 19)(13, 22)(15, 25)(16, 27)(18, 30)(20, 33)(21, 35)(23, 38)(24, 40)(26, 43)(28, 46)(29, 48)(31, 51)(32, 53)(34, 56)(36, 59)(37, 61)(39, 64)(41, 67)(42, 69)(44, 72)(45, 74)(47, 77)(49, 80)(50, 82)(52, 85)(54, 88)(55, 89)(57, 91)(58, 92)(60, 95)(62, 98)(63, 100)(65, 103)(66, 105)(70, 109)(71, 99)(73, 112)(75, 115)(76, 96)(78, 119)(79, 121)(81, 124)(83, 127)(84, 129)(86, 132)(87, 134)(90, 138)(93, 128)(94, 133)(97, 144)(101, 147)(102, 148)(104, 151)(107, 154)(108, 143)(110, 157)(111, 159)(113, 162)(114, 164)(116, 167)(118, 168)(120, 169)(122, 172)(123, 174)(125, 170)(126, 176)(130, 180)(131, 182)(135, 185)(136, 187)(137, 188)(139, 191)(140, 158)(141, 178)(142, 173)(145, 196)(146, 198)(149, 161)(150, 201)(152, 204)(153, 186)(155, 197)(156, 160)(163, 210)(165, 202)(166, 213)(171, 218)(175, 216)(177, 221)(179, 223)(181, 195)(183, 220)(184, 225)(189, 227)(190, 228)(192, 207)(193, 219)(194, 230)(199, 203)(200, 233)(205, 237)(206, 238)(209, 232)(212, 234)(214, 241)(215, 224)(217, 242)(222, 244)(226, 235)(229, 231)(236, 246)(240, 247)(243, 245)(248, 250)(249, 251)
b: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 24)(17, 27)(18, 29)(20, 32)(22, 35)(23, 37)(25, 40)(26, 42)(28, 45)(30, 48)(31, 50)(33, 53)(34, 55)(36, 58)(38, 61)(39, 63)(41, 66)(43, 69)(44, 71)(46, 74)(47, 76)(49, 79)(51, 82)(52, 84)(54, 87)(56, 89)(57, 91)(59, 92)(60, 94)(62, 97)(64, 100)(65, 102)(67, 105)(68, 106)(70, 108)(72, 99)(73, 111)(75, 114)(77, 96)(78, 118)(80, 121)(81, 123)(83, 126)(85, 129)(86, 131)(88, 134)(90, 137)(93, 141)(95, 133)(98, 144)(101, 120)(103, 148)(104, 150)(107, 135)(109, 143)(110, 156)(112, 159)(113, 161)(115, 164)(116, 166)(119, 168)(122, 171)(124, 174)(125, 175)(127, 176)(128, 178)(130, 179)(132, 182)(136, 186)(138, 188)(139, 190)(140, 192)(142, 193)(145, 195)(146, 197)(147, 169)(149, 162)(151, 201)(152, 203)(153, 187)(154, 185)(155, 198)(157, 160)(158, 207)(163, 209)(165, 212)(167, 213)(170, 216)(172, 218)(173, 219)(177, 220)(180, 223)(181, 196)(183, 221)(184, 217)(189, 222)(191, 228)(194, 230)(199, 204)(200, 226)(202, 234)(205, 229)(206, 215)(208, 239)(210, 232)(214, 240)(224, 238)(225, 242)(227, 244)(231, 237)(233, 235)(236, 245)(241, 247)(243, 246)(248, 249)(250, 251)
c: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 23)(16, 26)(17, 28)(19, 31)(21, 34)(22, 36)(24, 39)(25, 41)(27, 44)(29, 47)(30, 49)(32, 52)(33, 54)(35, 57)(37, 60)(38, 62)(40, 65)(42, 68)(43, 70)(45, 73)(46, 75)(48, 78)(50, 81)(51, 83)(53, 86)(56, 90)(58, 71)(59, 93)(61, 96)(63, 99)(64, 101)(66, 104)(67, 95)(69, 107)(72, 110)(74, 113)(76, 116)(77, 117)(79, 120)(80, 122)(82, 125)(84, 128)(85, 130)(87, 133)(88, 135)(89, 136)(91, 139)(92, 140)(94, 142)(97, 143)(98, 145)(100, 146)(102, 119)(103, 149)(105, 152)(106, 153)(108, 155)(111, 158)(112, 160)(114, 163)(115, 165)(118, 129)(121, 170)(123, 173)(124, 159)(126, 162)(127, 177)(131, 181)(132, 183)(134, 184)(137, 175)(138, 189)(141, 185)(144, 194)(147, 199)(148, 200)(150, 154)(151, 202)(156, 205)(157, 206)(161, 208)(164, 211)(166, 187)(167, 214)(168, 192)(169, 215)(171, 217)(172, 191)(174, 201)(178, 222)(179, 210)(180, 196)(182, 224)(186, 226)(188, 219)(190, 207)(193, 229)(195, 231)(197, 232)(198, 216)(203, 235)(204, 236)(209, 227)(212, 228)(213, 237)(220, 243)(221, 230)(223, 233)(225, 239)(234, 245)(238, 240)(241, 248)(242, 247)(244, 249)(246, 250)(251, 252)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 252, 50 ]
252
-1 2 3 4 6
-2 1 5 7 10
-3 11 1 16 8
-4 1 12 17 9
-5 2 13 26 18
-6 1 14 27 19
-7 2 15 28 20
-8 3 29 42 21
-9 22 4 30 43
-10 44 23 2 31
-11 45 24 3 32
-12 33 46 25 4
-13 34 68 47 5
-14 35 69 48 6
-15 36 70 49 7
-16 3 37 71 50
-17 4 38 72 51
-18 5 39 73 52
-19 6 40 74 53
-20 7 41 75 54
-21 55 106 8 76
-22 77 56 68 9
-23 78 57 107 10
-24 11 79 58 108
-25 12 80 59 109
-26 58 81 5 60
-27 99 82 6 61
-28 110 83 7 62
-29 111 84 8 63
-30 112 85 9 64
-31 113 86 10 65
-32 11 66 114 87
-33 88 12 67 115
-34 55 13 116 153
-35 89 14 106 96
-36 90 15 117 42
-37 91 135 16 118
-38 154 91 17 119
-39 155 71 18 120
-40 121 143 92 19
-41 122 93 20 109
-42 123 36 94 8
-43 124 92 95 9
-44 125 63 96 10
-45 11 156 126 97
-46 12 157 127 98
-47 99 13 158 128
-48 100 14 159 129
-49 101 15 160 130
-50 102 16 161 131
-51 132 103 17 162
-52 133 104 18 163
-53 134 105 19 164
-54 165 135 95 20
-55 187 34 166 21
-56 22 89 167 186
-57 23 136 61 153
-58 24 26 137 117
-59 25 69 138 117
-60 88 26 139 129
-61 57 168 27 185
-62 102 28 139 150
-63 44 198 101 29
-64 99 169 30 197
-65 170 140 31 97
-66 143 171 141 32
-67 33 70 128 172
-68 22 13 173 142
-69 133 14 59 174
-70 67 15 159 140
-71 77 16 39 175
-72 100 170 17 76
-73 143 18 205 162
-74 176 144 160 19
-75 177 145 206 20
-76 178 72 207 21
-77 22 71 93 140
-78 23 124 146 118
-79 24 157 179 120
-80 156 25 147 180
-81 26 181 119 208
-82 27 148 149 182
-83 126 28 149 183
-84 209 29 95 150
-85 210 94 30 151
-86 211 184 31 152
-87 133 212 107 32
-88 33 202 60 185
-89 56 35 136 213
-90 36 136 214 226
-91 187 37 38 186
-92 188 40 117 43
-93 77 189 41 107
-94 134 190 85 42
-95 191 84 43 54
-96 44 35 192 141
-97 45 190 104 65
-98 46 201 191 148
-99 47 27 216 64
-100 146 48 147 72
-101 232 49 215 63
-102 192 50 62 216
-103 144 125 158 51
-104 52 217 97 185
-105 178 53 108 218
-106 35 193 21 219
-107 23 201 93 87
-108 24 112 192 105
-109 111 25 158 41
-110 121 146 28 116
-111 149 29 229 109
-112 113 237 30 108
-113 176 112 194 31
-114 220 215 195 32
-115 33 221 238 196
-116 110 34 222 190
-117 36 58 59 92
-118 78 37 174 197
-119 198 168 81 38
-120 210 79 39 206
-121 110 223 169 40
-122 199 205 41 196
-123 168 239 42 196
-124 78 195 43 208
-125 44 200 103 224
-126 45 221 83 162
-127 176 220 46 161
-128 154 67 47 227
-129 232 201 48 60
-130 179 202 49 142
-131 211 203 50 217
-132 211 225 204 51
-133 69 52 228 87
-134 154 234 94 53
-135 37 151 141 54
-136 89 57 90 237
-137 200 58 240 186
-138 187 59 235 241
-139 166 60 226 62
-140 77 70 65 219
-141 66 222 135 96
-142 68 184 130 207
-143 66 40 73 207
-144 103 74 151 228
-145 200 172 75 174
-146 110 78 100 199
-147 209 100 80 224
-148 82 207 98 175
-149 111 82 83 194
-150 154 62 84 184
-151 242 144 135 85
-152 155 222 86 218
-153 34 188 57 229
-154 134 38 128 150
-155 168 39 160 152
-156 45 166 80 197
-157 198 46 79 167
-158 47 103 193 109
-159 231 48 70 161
-160 155 213 49 74
-161 159 50 127 230
-162 126 51 73 230
-163 231 243 169 52
-164 224 181 183 53
-165 180 240 54 230
-166 55 156 189 139
-167 56 244 157 228
-168 155 123 61 119
-169 121 238 64 163
-170 233 72 215 65
-171 66 181 204 229
-172 67 145 203 237
-173 68 180 192 225
-174 145 69 118 239
-175 71 148 226 238
-176 177 113 127 74
-177 176 243 75 208
-178 244 105 185 76
-179 79 234 193 130
-180 165 80 223 173
-181 81 235 171 164
-182 242 199 211 82
-183 236 83 239 164
-184 245 150 86 142
-185 88 178 104 61
-186 231 56 91 137
-187 55 91 138 205
-188 233 92 247 153
-189 166 93 203 248
-190 200 94 116 97
-191 213 235 95 98
-192 102 96 173 108
-193 179 158 106 217
-194 113 212 202 149
-195 124 114 226 218
-196 122 123 233 115
-197 156 204 118 64
-198 157 203 63 119
-199 122 146 182 227
-200 145 190 125 137
-201 225 107 129 98
-202 88 247 194 130
-203 198 189 172 131
-204 132 244 171 197
-205 187 122 232 73
-206 214 216 75 120
-207 143 148 76 142
-208 177 221 124 81
-209 147 246 237 84
-210 245 85 229 120
-211 132 182 86 131
-212 223 214 194 87
-213 89 191 160 227
-214 90 212 249 206
-215 101 114 170 240
-216 99 102 235 206
-217 104 236 193 131
-218 231 105 195 152
-219 242 223 106 140
-220 114 246 127 239
-221 245 115 126 208
-222 116 249 141 152
-223 121 212 180 219
-224 125 147 247 164
-225 132 243 201 173
-226 90 139 195 175
-227 199 213 128 250
-228 133 144 167 233
-229 111 210 171 153
-230 165 234 161 162
-231 159 163 218 186
-232 101 236 205 129
-233 188 170 228 196
-234 134 179 230 241
-235 191 181 138 216
-236 232 183 249 217
-237 209 112 136 172
-238 169 115 175 241
-239 220 123 183 174
-240 165 137 215 248
-241 234 138 238 251
-242 246 182 151 219
-243 177 225 250 163
-244 167 178 204 251
-245 210 221 248 184
-246 209 220 242 251
-247 188 202 224 250
-248 189 245 240 252
-249 222 214 236 252
-250 243 247 227 252
-251 244 246 241 252
-252 248 249 250 251
0

**************