[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 252, 51 ] =
MG(Rmap(252,185){14,14|9}_18).
(I) Following is a form readable by MAGMA:
g:=Graph<252|{ {1, 3}, {237, 239}, {1, 2}, {180, 183}, {43, 47}, {186, 190}, {1,
4}, {2, 7}, {219, 221}, {1, 6}, {240, 247}, {16, 23}, {2, 5}, {2, 10}, {7, 15},
{6, 14}, {5, 13}, {4, 12}, {3, 11}, {103, 111}, {145, 153}, {146, 154}, {69,
76}, {231, 238}, {101, 111}, {243, 249}, {3, 8}, {227, 232}, {66, 73}, {65, 74},
{4, 9}, {247, 250}, {113, 124}, {68, 74}, {246, 249}, {42, 58}, {234, 250},
{224, 240}, {71, 87}, {195, 210}, {233, 248}, {203, 217}, {225, 243}, {3, 16},
{235, 248}, {173, 190}, {11, 24}, {7, 20}, {14, 26}, {195, 215}, {164, 176}, {4,
17}, {226, 247}, {12, 25}, {10, 31}, {8, 29}, {6, 19}, {42, 60}, {5, 18}, {231,
240}, {9, 30}, {111, 120}, {161, 185}, {66, 91}, {229, 252}, {195, 217}, {230,
252}, {7, 28}, {65, 90}, {65, 93}, {6, 27}, {10, 23}, {8, 21}, {131, 158}, {32,
62}, {71, 89}, {33, 63}, {104, 118}, {5, 26}, {233, 246}, {9, 22}, {141, 146},
{167, 184}, {9, 41}, {205, 237}, {204, 236}, {25, 57}, {24, 56}, {23, 55}, {22,
54}, {21, 53}, {20, 52}, {19, 51}, {18, 50}, {17, 49}, {16, 48}, {15, 47}, {14,
46}, {13, 45}, {12, 44}, {11, 43}, {10, 42}, {8, 41}, {205, 236}, {194, 227},
{30, 60}, {222, 252}, {215, 245}, {214, 244}, {206, 236}, {31, 61}, {193, 226},
{223, 252}, {217, 250}, {198, 229}, {90, 126}, {208, 244}, {138, 174}, {28, 58},
{91, 125}, {81, 119}, {29, 59}, {151, 176}, {209, 246}, {202, 237}, {200, 239},
{131, 171}, {200, 225}, {148, 190}, {223, 245}, {222, 244}, {11, 32}, {208,
251}, {15, 36}, {78, 98}, {12, 33}, {212, 249}, {14, 35}, {198, 232}, {13, 34},
{221, 242}, {213, 250}, {133, 170}, {137, 185}, {194, 242}, {201, 248}, {135,
180}, {17, 37}, {218, 238}, {199, 243}, {88, 108}, {19, 39}, {18, 38}, {206,
251}, {128, 184}, {204, 244}, {202, 242}, {151, 174}, {140, 182}, {201, 243},
{213, 238}, {20, 40}, {27, 37}, {185, 248}, {44, 110}, {162, 224}, {42, 110},
{189, 249}, {182, 242}, {181, 241}, {165, 225}, {27, 94}, {172, 233}, {168,
237}, {58, 127}, {56, 125}, {50, 119}, {138, 207}, {152, 221}, {159, 218}, {146,
212}, {155, 221}, {156, 218}, {40, 111}, {57, 126}, {32, 104}, {184, 240}, {46,
102}, {37, 109}, {36, 108}, {35, 107}, {34, 106}, {33, 105}, {130, 202}, {152,
208}, {39, 110}, {144, 218}, {145, 219}, {150, 220}, {166, 236}, {51, 120}, {63,
116}, {55, 124}, {163, 232}, {139, 199}, {13, 64}, {182, 251}, {54, 123}, {52,
121}, {143, 193}, {157, 211}, {15, 64}, {53, 122}, {31, 80}, {141, 194}, {151,
216}, {130, 210}, {187, 235}, {132, 212}, {133, 213}, {134, 214}, {136, 216},
{16, 65}, {30, 79}, {28, 77}, {26, 75}, {24, 73}, {22, 71}, {20, 69}, {18, 67},
{50, 96}, {51, 97}, {17, 66}, {29, 78}, {25, 74}, {21, 70}, {138, 217}, {166,
245}, {56, 108}, {178, 230}, {28, 73}, {174, 251}, {57, 108}, {137, 220}, {52,
98}, {183, 225}, {19, 68}, {27, 76}, {41, 113}, {188, 228}, {169, 241}, {156,
196}, {158, 198}, {41, 112}, {191, 230}, {189, 228}, {49, 104}, {48, 105}, {47,
118}, {45, 116}, {43, 114}, {149, 207}, {173, 247}, {46, 117}, {188, 231}, {170,
246}, {30, 67}, {168, 245}, {155, 197}, {176, 238}, {158, 192}, {23, 72}, {186,
229}, {44, 115}, {60, 92}, {139, 234}, {183, 214}, {179, 209}, {51, 80}, {177,
210}, {171, 200}, {38, 66}, {140, 232}, {59, 94}, {134, 224}, {179, 213}, {137,
239}, {143, 233}, {167, 193}, {165, 205}, {175, 199}, {181, 220}, {164, 206},
{165, 207}, {129, 234}, {167, 204}, {162, 201}, {142, 227}, {169, 196}, {166,
203}, {49, 95}, {48, 95}, {128, 239}, {32, 81}, {61, 76}, {47, 94}, {45, 92},
{43, 90}, {40, 89}, {38, 87}, {36, 85}, {34, 83}, {22, 100}, {161, 211}, {33,
82}, {46, 93}, {37, 86}, {159, 235}, {21, 99}, {135, 241}, {35, 84}, {44, 91},
{161, 214}, {31, 103}, {160, 216}, {164, 220}, {191, 197}, {24, 99}, {29, 102},
{25, 100}, {150, 235}, {163, 222}, {160, 222}, {26, 101}, {180, 203}, {173,
210}, {172, 211}, {171, 212}, {39, 88}, {149, 234}, {87, 215}, {59, 186}, {62,
188}, {83, 209}, {63, 189}, {97, 226}, {54, 178}, {57, 189}, {56, 188}, {61,
187}, {89, 223}, {93, 219}, {55, 187}, {92, 209}, {124, 241}, {60, 178}, {78,
192}, {53, 186}, {84, 219}, {115, 227}, {83, 193}, {86, 195}, {85, 194}, {125,
229}, {126, 230}, {127, 231}, {122, 224}, {122, 228}, {123, 228}, {52, 148},
{55, 151}, {54, 150}, {53, 149}, {48, 145}, {50, 147}, {58, 152}, {100, 198},
{49, 146}, {96, 196}, {63, 154}, {109, 200}, {40, 143}, {62, 153}, {98, 197},
{116, 211}, {127, 216}, {39, 142}, {36, 143}, {38, 141}, {35, 142}, {106, 199},
{126, 208}, {34, 141}, {114, 192}, {119, 197}, {120, 203}, {124, 207}, {117,
192}, {121, 204}, {123, 206}, {96, 215}, {122, 205}, {88, 226}, {59, 128}, {61,
129}, {62, 130}, {45, 144}, {98, 223}, {119, 202}, {121, 196}, {118, 201}, {67,
131}, {88, 152}, {70, 134}, {69, 133}, {68, 132}, {113, 177}, {121, 185}, {97,
160}, {115, 177}, {116, 182}, {117, 183}, {75, 136}, {107, 175}, {77, 136}, {79,
138}, {112, 181}, {71, 129}, {78, 137}, {84, 156}, {81, 154}, {82, 153}, {103,
172}, {73, 133}, {118, 184}, {72, 135}, {95, 144}, {96, 176}, {85, 132}, {123,
170}, {103, 178}, {125, 168}, {102, 177}, {72, 144}, {109, 181}, {68, 158}, {69,
159}, {94, 132}, {105, 179}, {64, 155}, {80, 139}, {93, 134}, {120, 163}, {64,
156}, {79, 147}, {99, 191}, {110, 179}, {67, 157}, {82, 140}, {77, 147}, {106,
180}, {75, 148}, {115, 147}, {75, 169}, {101, 135}, {105, 139}, {106, 142}, {70,
160}, {101, 131}, {74, 162}, {113, 153}, {72, 161}, {107, 130}, {114, 155},
{112, 154}, {107, 128}, {79, 163}, {109, 129}, {112, 157}, {102, 136}, {127,
145}, {114, 157}, {95, 175}, {100, 149}, {76, 190}, {92, 174}, {89, 171}, {80,
162}, {77, 191}, {84, 167}, {81, 164}, {83, 166}, {97, 148}, {99, 150}, {90,
172}, {91, 173}, {82, 165}, {104, 159}, {86, 175}, {117, 140}, {70, 187}, {87,
170}, {85, 168}, {86, 169} }>;
(II) A more general form is to represent the graph as the orbit of {1, 3}
under the group generated by the following permutations:
a: (2, 6)(3, 4)(5, 14)(7, 19)(8, 9)(10, 27)(11, 12)(13, 35)(15, 39)(16, 17)(18,
46)(20, 51)(21, 22)(23, 37)(24, 25)(28, 68)(29, 30)(31, 76)(32, 33)(34, 84)(36,
88)(38, 93)(40, 97)(42, 94)(43, 44)(45, 107)(47, 110)(48, 49)(50, 117)(52,
120)(53, 54)(55, 109)(56, 57)(58, 132)(59, 60)(62, 63)(64, 142)(65, 66)(67,
102)(69, 80)(70, 71)(72, 86)(73, 74)(75, 101)(77, 158)(78, 79)(81, 82)(83,
167)(85, 152)(87, 134)(89, 160)(90, 91)(92, 128)(96, 183)(98, 163)(99, 100)(103,
190)(104, 105)(106, 156)(111, 148)(112, 113)(114, 115)(116, 130)(118, 179)(119,
140)(121, 203)(122, 123)(124, 181)(125, 126)(127, 212)(129, 187)(131, 136)(133,
162)(135, 169)(137, 138)(139, 159)(141, 219)(143, 226)(144, 175)(145, 146)(147,
192)(149, 150)(151, 200)(153, 154)(155, 227)(157, 177)(161, 195)(164, 165)(166,
204)(168, 208)(170, 224)(171, 216)(172, 173)(174, 239)(176, 225)(178, 186)(180,
196)(182, 202)(184, 209)(185, 217)(188, 189)(191, 198)(194, 221)(197, 232)(199,
218)(201, 213)(205, 206)(207, 220)(210, 211)(214, 215)(222, 223)(229, 230)(231,
249)(233, 247)(234, 235)(237, 251)(238, 243)(240, 246)(244, 245)(248, 250) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 24)(17, 27)(18,
29)(20, 32)(22, 35)(25, 39)(26, 41)(28, 43)(30, 46)(31, 48)(33, 51)(34, 53)(36,
56)(38, 59)(40, 62)(42, 65)(44, 68)(45, 70)(47, 73)(49, 76)(50, 78)(52, 81)(54,
84)(55, 72)(57, 88)(58, 90)(60, 93)(61, 95)(63, 97)(64, 99)(66, 94)(67, 102)(69,
104)(71, 107)(74, 110)(75, 112)(77, 114)(79, 117)(80, 105)(82, 120)(83, 122)(85,
125)(86, 109)(87, 128)(89, 130)(91, 132)(92, 134)(96, 137)(98, 119)(100,
142)(101, 113)(103, 145)(106, 149)(111, 153)(115, 158)(116, 160)(118, 133)(121,
164)(123, 167)(124, 135)(126, 152)(127, 172)(129, 175)(131, 177)(136, 157)(138,
183)(140, 163)(141, 186)(143, 188)(144, 187)(146, 190)(147, 192)(148, 154)(150,
156)(151, 161)(155, 191)(162, 179)(165, 203)(166, 205)(169, 181)(170, 184)(171,
210)(173, 212)(174, 214)(176, 185)(178, 219)(180, 207)(182, 222)(189, 226)(193,
228)(194, 229)(195, 200)(196, 220)(198, 227)(199, 234)(201, 213)(202, 223)(204,
206)(209, 224)(211, 216)(215, 239)(217, 225)(218, 235)(221, 230)(231, 233)(237,
245)(238, 248)(240, 246)(242, 252)(243, 250)(244, 251)(247, 249)
c: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 23)(16, 26)(17,
28)(19, 31)(21, 34)(22, 36)(24, 38)(25, 40)(27, 42)(29, 45)(30, 47)(32, 50)(33,
52)(35, 55)(37, 58)(39, 61)(41, 64)(43, 67)(44, 69)(46, 72)(48, 75)(49, 77)(51,
80)(53, 83)(54, 85)(56, 87)(57, 89)(59, 92)(60, 94)(62, 96)(63, 98)(65, 101)(66,
73)(68, 103)(70, 106)(71, 108)(74, 111)(76, 110)(78, 116)(79, 118)(81, 119)(82,
121)(84, 124)(86, 127)(88, 129)(90, 131)(91, 133)(93, 135)(95, 136)(97, 139)(99,
141)(100, 143)(102, 144)(104, 147)(105, 148)(107, 151)(109, 152)(112, 155)(113,
156)(114, 157)(115, 159)(117, 161)(120, 162)(122, 166)(123, 168)(125, 170)(126,
171)(128, 174)(130, 176)(132, 178)(134, 180)(137, 182)(138, 184)(140, 185)(142,
187)(145, 169)(146, 191)(149, 193)(150, 194)(153, 196)(154, 197)(158, 172)(160,
199)(163, 201)(164, 202)(165, 204)(167, 207)(173, 213)(175, 216)(177, 218)(179,
190)(181, 221)(183, 214)(186, 209)(188, 215)(189, 223)(192, 211)(195, 231)(198,
233)(200, 208)(203, 224)(205, 236)(206, 237)(210, 238)(212, 230)(217, 240)(219,
241)(220, 242)(222, 243)(225, 244)(226, 234)(227, 235)(228, 245)(229, 246)(232,
248)(239, 251)(247, 250)(249, 252)
C4[ 252, 51 ]
252
-1 2 3 4 6
-2 1 5 7 10
-3 11 1 16 8
-4 1 12 17 9
-5 2 13 26 18
-6 1 14 27 19
-7 2 15 28 20
-8 3 29 41 21
-9 22 4 30 41
-10 23 2 31 42
-11 24 3 32 43
-12 33 44 25 4
-13 34 45 5 64
-14 35 46 26 6
-15 36 47 7 64
-16 23 3 48 65
-17 66 4 37 49
-18 67 5 38 50
-19 68 6 39 51
-20 69 7 40 52
-21 99 70 8 53
-22 100 71 9 54
-23 55 16 72 10
-24 11 99 56 73
-25 12 100 57 74
-26 101 14 5 75
-27 37 6 94 76
-28 77 58 7 73
-29 78 102 59 8
-30 67 79 60 9
-31 80 103 61 10
-32 11 81 104 62
-33 12 82 105 63
-34 13 83 106 141
-35 14 84 107 142
-36 143 15 85 108
-37 27 17 86 109
-38 66 18 141 87
-39 88 110 19 142
-40 143 89 111 20
-41 112 113 8 9
-42 110 58 60 10
-43 11 90 47 114
-44 110 12 91 115
-45 144 13 92 116
-46 14 102 93 117
-47 15 94 118 43
-48 145 16 105 95
-49 146 104 17 95
-50 147 18 96 119
-51 80 19 97 120
-52 121 148 20 98
-53 122 149 21 186
-54 22 123 178 150
-55 187 23 124 151
-56 188 24 125 108
-57 189 25 126 108
-58 28 127 42 152
-59 94 29 128 186
-60 178 92 30 42
-61 187 129 31 76
-62 188 130 32 153
-63 33 154 189 116
-64 155 13 156 15
-65 90 16 93 74
-66 91 38 17 73
-67 157 18 30 131
-68 132 158 19 74
-69 133 159 20 76
-70 187 134 160 21
-71 22 89 129 87
-72 23 144 135 161
-73 66 133 24 28
-74 68 25 162 65
-75 26 136 169 148
-76 69 190 27 61
-77 136 147 191 28
-78 137 192 29 98
-79 147 138 30 163
-80 51 139 162 31
-81 154 119 32 164
-82 33 165 140 153
-83 209 34 166 193
-84 35 156 167 219
-85 132 36 168 194
-86 37 169 195 175
-87 38 71 170 215
-88 39 226 108 152
-89 223 71 171 40
-90 126 172 43 65
-91 44 66 125 173
-92 209 45 60 174
-93 46 134 65 219
-94 132 47 59 27
-95 144 48 49 175
-96 176 50 215 196
-97 148 160 226 51
-98 78 223 52 197
-99 24 191 150 21
-100 22 198 25 149
-101 111 135 26 131
-102 177 46 136 29
-103 111 178 172 31
-104 49 159 118 32
-105 33 179 48 139
-106 34 199 180 142
-107 35 128 130 175
-108 88 56 57 36
-109 200 37 181 129
-110 44 179 39 42
-111 101 103 40 120
-112 154 157 181 41
-113 177 124 41 153
-114 155 157 192 43
-115 44 177 147 227
-116 45 211 182 63
-117 46 192 183 140
-118 47 201 104 184
-119 81 202 50 197
-120 111 203 51 163
-121 204 52 185 196
-122 224 205 228 53
-123 170 206 228 54
-124 55 113 207 241
-125 56 91 168 229
-126 57 90 208 230
-127 231 145 58 216
-128 59 107 184 239
-129 234 71 61 109
-130 210 202 62 107
-131 67 101 158 171
-132 68 212 94 85
-133 69 213 170 73
-134 70 224 93 214
-135 101 180 72 241
-136 77 102 216 75
-137 220 78 239 185
-138 79 217 174 207
-139 199 80 234 105
-140 232 82 182 117
-141 34 146 38 194
-142 35 39 106 227
-143 233 36 193 40
-144 45 72 95 218
-145 48 127 153 219
-146 154 212 49 141
-147 77 79 115 50
-148 190 52 75 97
-149 100 234 53 207
-150 99 220 235 54
-151 55 176 216 174
-152 88 221 58 208
-153 145 113 82 62
-154 112 146 81 63
-155 221 114 64 197
-156 84 64 196 218
-157 67 112 211 114
-158 198 68 192 131
-159 69 235 104 218
-160 222 70 216 97
-161 211 214 72 185
-162 80 201 224 74
-163 232 79 222 120
-164 176 220 81 206
-165 82 225 205 207
-166 245 203 236 83
-167 193 204 84 184
-168 245 125 237 85
-169 75 86 196 241
-170 133 123 246 87
-171 89 200 212 131
-172 90 211 233 103
-173 210 91 190 247
-174 92 138 151 251
-175 199 95 107 86
-176 238 96 151 164
-177 210 102 113 115
-178 103 60 54 230
-179 110 209 213 105
-180 135 203 106 183
-181 220 112 109 241
-182 242 116 140 251
-183 180 214 225 117
-184 167 128 118 240
-185 121 137 248 161
-186 190 59 53 229
-187 55 70 235 61
-188 231 56 62 228
-189 57 249 63 228
-190 148 173 76 186
-191 77 99 197 230
-192 78 114 158 117
-193 143 167 83 226
-194 242 227 85 141
-195 210 215 217 86
-196 121 156 169 96
-197 155 191 119 98
-198 100 232 158 229
-199 243 106 139 175
-200 225 171 239 109
-201 243 248 118 162
-202 242 237 119 130
-203 166 180 217 120
-204 121 167 244 236
-205 165 122 236 237
-206 123 236 251 164
-207 165 124 138 149
-208 244 126 152 251
-209 179 92 246 83
-210 177 173 195 130
-211 157 116 161 172
-212 132 146 171 249
-213 133 179 238 250
-214 134 244 161 183
-215 245 96 195 87
-216 136 127 160 151
-217 203 138 195 250
-218 144 156 159 238
-219 221 145 93 84
-220 137 181 150 164
-221 242 155 152 219
-222 244 160 163 252
-223 89 245 98 252
-224 122 134 162 240
-225 165 243 200 183
-226 88 247 193 97
-227 232 115 194 142
-228 122 188 123 189
-229 198 125 186 252
-230 178 191 126 252
-231 188 127 238 240
-232 198 227 140 163
-233 143 246 248 172
-234 149 139 129 250
-235 187 159 248 150
-236 166 204 205 206
-237 168 202 205 239
-238 176 231 213 218
-239 200 137 237 128
-240 231 224 247 184
-241 124 135 169 181
-242 221 202 182 194
-243 199 201 225 249
-244 222 214 204 208
-245 166 168 223 215
-246 209 233 170 249
-247 226 173 250 240
-248 233 201 235 185
-249 243 189 212 246
-250 234 213 247 217
-251 182 206 174 208
-252 222 223 229 230
0