C4graphGraph forms for C4 [ 253, 1 ] = C_253(1,45)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 253, 1 ] = C_253(1,45).

(I) Following is a form readable by MAGMA:

g:=Graph<253|{ {2, 3}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {198, 199}, {200, 201}, {1, 2}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {3, 4}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {107, 108}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {195, 196}, {7, 8}, {247, 248}, {231, 232}, {215, 216}, {103, 104}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {199, 200}, {15, 16}, {239, 240}, {207, 208}, {111, 112}, {79, 80}, {47, 48}, {143, 144}, {175, 176}, {2, 47}, {208, 253}, {82, 127}, {80, 125}, {66, 111}, {64, 109}, {16, 61}, {18, 63}, {128, 173}, {130, 175}, {144, 189}, {146, 191}, {192, 237}, {194, 239}, {1, 46}, {81, 126}, {65, 110}, {17, 62}, {129, 174}, {145, 190}, {193, 238}, {3, 48}, {207, 252}, {203, 248}, {79, 124}, {75, 120}, {71, 116}, {67, 112}, {7, 52}, {11, 56}, {15, 60}, {131, 176}, {135, 180}, {139, 184}, {143, 188}, {195, 240}, {199, 244}, {4, 49}, {206, 251}, {204, 249}, {78, 123}, {76, 121}, {70, 115}, {68, 113}, {6, 51}, {12, 57}, {14, 59}, {132, 177}, {134, 179}, {140, 185}, {142, 187}, {196, 241}, {198, 243}, {5, 50}, {205, 250}, {77, 122}, {69, 114}, {13, 58}, {133, 178}, {141, 186}, {197, 242}, {8, 53}, {202, 247}, {74, 119}, {72, 117}, {10, 55}, {136, 181}, {138, 183}, {200, 245}, {9, 54}, {223, 224}, {201, 246}, {95, 96}, {73, 118}, {31, 32}, {137, 182}, {159, 160}, {19, 64}, {63, 108}, {59, 104}, {23, 68}, {27, 72}, {31, 76}, {51, 96}, {55, 100}, {147, 192}, {151, 196}, {155, 200}, {159, 204}, {179, 224}, {183, 228}, {187, 232}, {191, 236}, {20, 65}, {62, 107}, {60, 105}, {22, 67}, {28, 73}, {30, 75}, {52, 97}, {54, 99}, {148, 193}, {150, 195}, {156, 201}, {158, 203}, {180, 225}, {182, 227}, {188, 233}, {190, 235}, {21, 66}, {61, 106}, {29, 74}, {53, 98}, {149, 194}, {157, 202}, {181, 226}, {189, 234}, {24, 69}, {58, 103}, {56, 101}, {26, 71}, {152, 197}, {154, 199}, {184, 229}, {186, 231}, {25, 70}, {57, 102}, {153, 198}, {185, 230}, {32, 77}, {34, 79}, {48, 93}, {50, 95}, {160, 205}, {162, 207}, {176, 221}, {178, 223}, {33, 78}, {49, 94}, {161, 206}, {177, 222}, {35, 80}, {39, 84}, {43, 88}, {47, 92}, {163, 208}, {167, 212}, {171, 216}, {175, 220}, {36, 81}, {38, 83}, {44, 89}, {46, 91}, {164, 209}, {166, 211}, {172, 217}, {174, 219}, {37, 82}, {45, 90}, {165, 210}, {173, 218}, {40, 85}, {42, 87}, {168, 213}, {170, 215}, {41, 86}, {63, 64}, {169, 214}, {191, 192}, {1, 209}, {2, 210}, {3, 211}, {4, 212}, {5, 213}, {6, 214}, {7, 215}, {8, 216}, {9, 217}, {10, 218}, {11, 219}, {12, 220}, {13, 221}, {14, 222}, {15, 223}, {32, 240}, {33, 241}, {34, 242}, {35, 243}, {36, 244}, {37, 245}, {38, 246}, {39, 247}, {40, 248}, {41, 249}, {42, 250}, {43, 251}, {44, 252}, {45, 253}, {83, 128}, {95, 140}, {91, 136}, {87, 132}, {115, 160}, {119, 164}, {123, 168}, {127, 172}, {84, 129}, {94, 139}, {92, 137}, {86, 131}, {116, 161}, {118, 163}, {124, 169}, {126, 171}, {85, 130}, {93, 138}, {117, 162}, {125, 170}, {88, 133}, {90, 135}, {120, 165}, {122, 167}, {89, 134}, {121, 166}, {96, 141}, {98, 143}, {112, 157}, {114, 159}, {97, 142}, {113, 158}, {16, 224}, {17, 225}, {18, 226}, {19, 227}, {20, 228}, {21, 229}, {22, 230}, {23, 231}, {24, 232}, {25, 233}, {26, 234}, {27, 235}, {28, 236}, {29, 237}, {30, 238}, {31, 239}, {99, 144}, {111, 156}, {107, 152}, {103, 148}, {100, 145}, {110, 155}, {108, 153}, {102, 147}, {101, 146}, {109, 154}, {1, 253}, {104, 149}, {106, 151}, {105, 150}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 46)(3, 91)(4, 136)(5, 181)(6, 226)(7, 18)(8, 63)(9, 108)(10, 153)(11, 198)(12, 243)(13, 35)(14, 80)(15, 125)(16, 170)(17, 215)(19, 52)(20, 97)(21, 142)(22, 187)(23, 232)(25, 69)(26, 114)(27, 159)(28, 204)(29, 249)(30, 41)(31, 86)(32, 131)(33, 176)(34, 221)(36, 58)(37, 103)(38, 148)(39, 193)(40, 238)(42, 75)(43, 120)(44, 165)(45, 210)(48, 92)(49, 137)(50, 182)(51, 227)(53, 64)(54, 109)(55, 154)(56, 199)(57, 244)(59, 81)(60, 126)(61, 171)(62, 216)(65, 98)(66, 143)(67, 188)(68, 233)(71, 115)(72, 160)(73, 205)(74, 250)(76, 87)(77, 132)(78, 177)(79, 222)(82, 104)(83, 149)(84, 194)(85, 239)(88, 121)(89, 166)(90, 211)(94, 138)(95, 183)(96, 228)(99, 110)(100, 155)(101, 200)(102, 245)(105, 127)(106, 172)(107, 217)(111, 144)(112, 189)(113, 234)(117, 161)(118, 206)(119, 251)(122, 133)(123, 178)(124, 223)(128, 150)(129, 195)(130, 240)(134, 167)(135, 212)(140, 184)(141, 229)(145, 156)(146, 201)(147, 246)(151, 173)(152, 218)(157, 190)(158, 235)(163, 207)(164, 252)(168, 179)(169, 224)(174, 196)(175, 241)(180, 213)(186, 230)(191, 202)(192, 247)(197, 219)(203, 236)(209, 253)(214, 225)(220, 242)(237, 248)
b: (2, 209)(3, 164)(4, 119)(5, 74)(6, 29)(7, 237)(8, 192)(9, 147)(10, 102)(11, 57)(13, 220)(14, 175)(15, 130)(16, 85)(17, 40)(18, 248)(19, 203)(20, 158)(21, 113)(22, 68)(24, 231)(25, 186)(26, 141)(27, 96)(28, 51)(30, 214)(31, 169)(32, 124)(33, 79)(35, 242)(36, 197)(37, 152)(38, 107)(39, 62)(41, 225)(42, 180)(43, 135)(44, 90)(46, 253)(47, 208)(48, 163)(49, 118)(50, 73)(52, 236)(53, 191)(54, 146)(55, 101)(58, 219)(59, 174)(60, 129)(61, 84)(63, 247)(64, 202)(65, 157)(66, 112)(69, 230)(70, 185)(71, 140)(72, 95)(75, 213)(76, 168)(77, 123)(80, 241)(81, 196)(82, 151)(83, 106)(86, 224)(87, 179)(88, 134)(91, 252)(92, 207)(93, 162)(94, 117)(97, 235)(98, 190)(99, 145)(103, 218)(104, 173)(105, 128)(108, 246)(109, 201)(110, 156)(114, 229)(115, 184)(116, 139)(120, 212)(121, 167)(125, 240)(126, 195)(127, 150)(131, 223)(132, 178)(136, 251)(137, 206)(138, 161)(142, 234)(143, 189)(148, 217)(149, 172)(153, 245)(154, 200)(159, 228)(160, 183)(165, 211)(170, 239)(171, 194)(176, 222)(181, 250)(182, 205)(187, 233)(193, 216)(198, 244)(204, 227)(215, 238)(226, 249)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 253, 1 ]
253
-1 209 253 2 46
-2 1 210 3 47
-3 2 211 4 48
-4 3 212 5 49
-5 4 213 6 50
-6 5 214 7 51
-7 6 215 8 52
-8 7 216 9 53
-9 8 217 10 54
-10 11 55 9 218
-11 12 56 10 219
-12 11 220 13 57
-13 12 221 14 58
-14 13 222 15 59
-15 14 223 16 60
-16 15 224 17 61
-17 16 225 18 62
-18 17 226 19 63
-19 18 227 20 64
-20 19 228 21 65
-21 22 66 20 229
-22 23 67 21 230
-23 22 231 24 68
-24 23 232 25 69
-25 24 233 26 70
-26 25 234 27 71
-27 26 235 28 72
-28 27 236 29 73
-29 28 237 30 74
-30 29 238 31 75
-31 30 239 32 76
-32 33 77 31 240
-33 34 78 32 241
-34 33 242 35 79
-35 34 243 36 80
-36 35 244 37 81
-37 36 245 38 82
-38 37 246 39 83
-39 38 247 40 84
-40 39 248 41 85
-41 40 249 42 86
-42 41 250 43 87
-43 44 88 42 251
-44 45 89 43 252
-45 44 253 46 90
-46 1 45 47 91
-47 2 46 48 92
-48 3 47 49 93
-49 4 48 50 94
-50 5 49 51 95
-51 6 50 52 96
-52 7 51 53 97
-53 8 52 54 98
-54 55 99 9 53
-55 56 100 10 54
-56 11 55 57 101
-57 12 56 58 102
-58 13 57 59 103
-59 14 58 60 104
-60 15 59 61 105
-61 16 60 62 106
-62 17 61 63 107
-63 18 62 64 108
-64 19 63 65 109
-65 66 110 20 64
-66 67 111 21 65
-67 22 66 68 112
-68 23 67 69 113
-69 24 68 70 114
-70 25 69 71 115
-71 26 70 72 116
-72 27 71 73 117
-73 28 72 74 118
-74 29 73 75 119
-75 30 74 76 120
-76 77 121 31 75
-77 78 122 32 76
-78 33 77 79 123
-79 34 78 80 124
-80 35 79 81 125
-81 36 80 82 126
-82 37 81 83 127
-83 38 82 84 128
-84 39 83 85 129
-85 40 84 86 130
-86 41 85 87 131
-87 88 132 42 86
-88 89 133 43 87
-89 44 88 90 134
-90 45 89 91 135
-91 46 90 92 136
-92 47 91 93 137
-93 48 92 94 138
-94 49 93 95 139
-95 50 94 96 140
-96 51 95 97 141
-97 52 96 98 142
-98 99 143 53 97
-99 100 144 54 98
-100 55 99 101 145
-101 56 100 102 146
-102 57 101 103 147
-103 58 102 104 148
-104 59 103 105 149
-105 60 104 106 150
-106 61 105 107 151
-107 62 106 108 152
-108 63 107 109 153
-109 110 154 64 108
-110 111 155 65 109
-111 66 110 112 156
-112 67 111 113 157
-113 68 112 114 158
-114 69 113 115 159
-115 70 114 116 160
-116 71 115 117 161
-117 72 116 118 162
-118 73 117 119 163
-119 74 118 120 164
-120 121 165 75 119
-121 122 166 76 120
-122 77 121 123 167
-123 78 122 124 168
-124 79 123 125 169
-125 80 124 126 170
-126 81 125 127 171
-127 82 126 128 172
-128 83 127 129 173
-129 84 128 130 174
-130 85 129 131 175
-131 132 176 86 130
-132 133 177 87 131
-133 88 132 134 178
-134 89 133 135 179
-135 90 134 136 180
-136 91 135 137 181
-137 92 136 138 182
-138 93 137 139 183
-139 94 138 140 184
-140 95 139 141 185
-141 96 140 142 186
-142 143 187 97 141
-143 144 188 98 142
-144 99 143 145 189
-145 100 144 146 190
-146 101 145 147 191
-147 102 146 148 192
-148 103 147 149 193
-149 104 148 150 194
-150 105 149 151 195
-151 106 150 152 196
-152 107 151 153 197
-153 154 198 108 152
-154 155 199 109 153
-155 110 154 156 200
-156 111 155 157 201
-157 112 156 158 202
-158 113 157 159 203
-159 114 158 160 204
-160 115 159 161 205
-161 116 160 162 206
-162 117 161 163 207
-163 118 162 164 208
-164 165 209 119 163
-165 166 210 120 164
-166 121 165 167 211
-167 122 166 168 212
-168 123 167 169 213
-169 124 168 170 214
-170 125 169 171 215
-171 126 170 172 216
-172 127 171 173 217
-173 128 172 174 218
-174 129 173 175 219
-175 176 220 130 174
-176 177 221 131 175
-177 132 176 178 222
-178 133 177 179 223
-179 134 178 180 224
-180 135 179 181 225
-181 136 180 182 226
-182 137 181 183 227
-183 138 182 184 228
-184 139 183 185 229
-185 140 184 186 230
-186 187 231 141 185
-187 188 232 142 186
-188 143 187 189 233
-189 144 188 190 234
-190 145 189 191 235
-191 146 190 192 236
-192 147 191 193 237
-193 148 192 194 238
-194 149 193 195 239
-195 150 194 196 240
-196 151 195 197 241
-197 198 242 152 196
-198 199 243 153 197
-199 154 198 200 244
-200 155 199 201 245
-201 156 200 202 246
-202 157 201 203 247
-203 158 202 204 248
-204 159 203 205 249
-205 160 204 206 250
-206 161 205 207 251
-207 162 206 208 252
-208 209 253 163 207
-209 1 210 164 208
-210 165 209 2 211
-211 166 210 3 212
-212 167 211 4 213
-213 168 212 5 214
-214 169 213 6 215
-215 170 214 7 216
-216 171 215 8 217
-217 172 216 9 218
-218 173 217 10 219
-219 11 220 174 218
-220 12 221 175 219
-221 176 220 13 222
-222 177 221 14 223
-223 178 222 15 224
-224 179 223 16 225
-225 180 224 17 226
-226 181 225 18 227
-227 182 226 19 228
-228 183 227 20 229
-229 184 228 21 230
-230 22 231 185 229
-231 23 232 186 230
-232 187 231 24 233
-233 188 232 25 234
-234 189 233 26 235
-235 190 234 27 236
-236 191 235 28 237
-237 192 236 29 238
-238 193 237 30 239
-239 194 238 31 240
-240 195 239 32 241
-241 33 242 196 240
-242 34 243 197 241
-243 198 242 35 244
-244 199 243 36 245
-245 200 244 37 246
-246 201 245 38 247
-247 202 246 39 248
-248 203 247 40 249
-249 204 248 41 250
-250 205 249 42 251
-251 206 250 43 252
-252 44 253 207 251
-253 1 45 208 252
0

**************