C4graphGraph forms for C4 [ 255, 2 ] = C_255(1,86)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 255, 2 ] = C_255(1,86).

(I) Following is a form readable by MAGMA:

g:=Graph<255|{ {2, 3}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {1, 2}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {3, 4}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {195, 196}, {7, 8}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {1, 87}, {8, 94}, {9, 95}, {32, 118}, {33, 119}, {40, 126}, {41, 127}, {128, 214}, {129, 215}, {136, 222}, {137, 223}, {160, 246}, {161, 247}, {168, 254}, {169, 255}, {2, 88}, {3, 89}, {6, 92}, {7, 93}, {34, 120}, {35, 121}, {38, 124}, {39, 125}, {130, 216}, {131, 217}, {134, 220}, {135, 221}, {162, 248}, {163, 249}, {166, 252}, {167, 253}, {4, 90}, {5, 91}, {36, 122}, {37, 123}, {132, 218}, {133, 219}, {164, 250}, {165, 251}, {10, 96}, {11, 97}, {14, 100}, {15, 101}, {26, 112}, {27, 113}, {30, 116}, {31, 117}, {138, 224}, {139, 225}, {142, 228}, {143, 229}, {154, 240}, {155, 241}, {158, 244}, {159, 245}, {12, 98}, {13, 99}, {28, 114}, {29, 115}, {140, 226}, {141, 227}, {156, 242}, {157, 243}, {16, 102}, {17, 103}, {24, 110}, {25, 111}, {144, 230}, {145, 231}, {152, 238}, {153, 239}, {18, 104}, {19, 105}, {22, 108}, {23, 109}, {146, 232}, {147, 233}, {150, 236}, {151, 237}, {20, 106}, {21, 107}, {148, 234}, {149, 235}, {63, 64}, {191, 192}, {2, 171}, {86, 255}, {84, 253}, {82, 251}, {80, 249}, {70, 239}, {68, 237}, {66, 235}, {64, 233}, {4, 173}, {6, 175}, {16, 185}, {18, 187}, {20, 189}, {22, 191}, {42, 128}, {63, 149}, {62, 148}, {59, 145}, {58, 144}, {43, 129}, {46, 132}, {47, 133}, {106, 192}, {107, 193}, {110, 196}, {111, 197}, {122, 208}, {123, 209}, {126, 212}, {127, 213}, {1, 170}, {85, 254}, {81, 250}, {69, 238}, {65, 234}, {5, 174}, {17, 186}, {21, 190}, {44, 130}, {61, 147}, {60, 146}, {45, 131}, {108, 194}, {109, 195}, {124, 210}, {125, 211}, {3, 172}, {83, 252}, {67, 236}, {19, 188}, {48, 134}, {57, 143}, {49, 135}, {56, 142}, {112, 198}, {113, 199}, {120, 206}, {121, 207}, {7, 176}, {79, 248}, {71, 240}, {15, 184}, {8, 177}, {78, 247}, {76, 245}, {74, 243}, {72, 241}, {10, 179}, {12, 181}, {14, 183}, {50, 136}, {51, 137}, {54, 140}, {55, 141}, {114, 200}, {115, 201}, {118, 204}, {119, 205}, {9, 178}, {77, 246}, {73, 242}, {13, 182}, {52, 138}, {53, 139}, {116, 202}, {117, 203}, {11, 180}, {75, 244}, {64, 150}, {73, 159}, {72, 158}, {65, 151}, {96, 182}, {97, 183}, {104, 190}, {105, 191}, {23, 192}, {63, 232}, {31, 200}, {55, 224}, {24, 193}, {62, 231}, {60, 229}, {58, 227}, {56, 225}, {26, 195}, {28, 197}, {30, 199}, {66, 152}, {71, 157}, {70, 156}, {67, 153}, {98, 184}, {99, 185}, {102, 188}, {103, 189}, {25, 194}, {61, 230}, {57, 226}, {29, 198}, {68, 154}, {69, 155}, {100, 186}, {101, 187}, {27, 196}, {59, 228}, {32, 201}, {34, 203}, {36, 205}, {38, 207}, {48, 217}, {50, 219}, {52, 221}, {54, 223}, {74, 160}, {94, 180}, {91, 177}, {90, 176}, {79, 165}, {78, 164}, {75, 161}, {95, 181}, {33, 202}, {37, 206}, {49, 218}, {53, 222}, {76, 162}, {93, 179}, {92, 178}, {77, 163}, {35, 204}, {51, 220}, {80, 166}, {89, 175}, {88, 174}, {81, 167}, {39, 208}, {47, 216}, {40, 209}, {42, 211}, {44, 213}, {46, 215}, {82, 168}, {87, 173}, {86, 172}, {83, 169}, {41, 210}, {45, 214}, {1, 255}, {85, 171}, {84, 170}, {43, 212}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 87)(3, 173)(5, 90)(6, 176)(8, 93)(9, 179)(11, 96)(12, 182)(14, 99)(15, 185)(17, 102)(18, 188)(20, 105)(21, 191)(23, 108)(24, 194)(26, 111)(27, 197)(29, 114)(30, 200)(32, 117)(33, 203)(35, 120)(36, 206)(38, 123)(39, 209)(41, 126)(42, 212)(44, 129)(45, 215)(47, 132)(48, 218)(50, 135)(51, 221)(53, 138)(54, 224)(56, 141)(57, 227)(59, 144)(60, 230)(62, 147)(63, 233)(65, 150)(66, 236)(68, 153)(69, 239)(71, 156)(72, 242)(74, 159)(75, 245)(77, 162)(78, 248)(80, 165)(81, 251)(83, 168)(84, 254)(86, 171)(89, 174)(92, 177)(95, 180)(98, 183)(101, 186)(104, 189)(107, 192)(110, 195)(113, 198)(116, 201)(119, 204)(122, 207)(125, 210)(128, 213)(131, 216)(134, 219)(137, 222)(140, 225)(143, 228)(146, 231)(149, 234)(152, 237)(155, 240)(158, 243)(161, 246)(164, 249)(167, 252)(170, 255)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255)
c: (2, 170)(3, 84)(4, 253)(5, 167)(6, 81)(7, 250)(8, 164)(9, 78)(10, 247)(11, 161)(12, 75)(13, 244)(14, 158)(15, 72)(16, 241)(17, 155)(18, 69)(19, 238)(20, 152)(21, 66)(22, 235)(23, 149)(24, 63)(25, 232)(26, 146)(27, 60)(28, 229)(29, 143)(30, 57)(31, 226)(32, 140)(33, 54)(34, 223)(35, 137)(36, 51)(37, 220)(38, 134)(39, 48)(40, 217)(41, 131)(42, 45)(43, 214)(44, 128)(46, 211)(47, 125)(49, 208)(50, 122)(52, 205)(53, 119)(55, 202)(56, 116)(58, 199)(59, 113)(61, 196)(62, 110)(64, 193)(65, 107)(67, 190)(68, 104)(70, 187)(71, 101)(73, 184)(74, 98)(76, 181)(77, 95)(79, 178)(80, 92)(82, 175)(83, 89)(85, 172)(87, 255)(88, 169)(90, 252)(91, 166)(93, 249)(94, 163)(96, 246)(97, 160)(99, 243)(100, 157)(102, 240)(103, 154)(105, 237)(106, 151)(108, 234)(109, 148)(111, 231)(112, 145)(114, 228)(115, 142)(117, 225)(118, 139)(120, 222)(121, 136)(123, 219)(124, 133)(126, 216)(127, 130)(129, 213)(132, 210)(135, 207)(138, 204)(141, 201)(144, 198)(147, 195)(150, 192)(153, 189)(156, 186)(159, 183)(162, 180)(165, 177)(168, 174)(173, 254)(176, 251)(179, 248)(182, 245)(185, 242)(188, 239)(191, 236)(194, 233)(197, 230)(200, 227)(203, 224)(206, 221)(209, 218)(212, 215)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 255, 2 ]
255
-1 2 255 170 87
-2 88 1 3 171
-3 89 2 4 172
-4 90 3 5 173
-5 91 4 6 174
-6 92 5 7 175
-7 176 93 6 8
-8 177 94 7 9
-9 178 95 8 10
-10 11 179 96 9
-11 12 180 97 10
-12 11 13 181 98
-13 99 12 14 182
-14 100 13 15 183
-15 101 14 16 184
-16 102 15 17 185
-17 103 16 18 186
-18 187 104 17 19
-19 188 105 18 20
-20 189 106 19 21
-21 22 190 107 20
-22 23 191 108 21
-23 22 24 192 109
-24 110 23 25 193
-25 111 24 26 194
-26 112 25 27 195
-27 113 26 28 196
-28 114 27 29 197
-29 198 115 28 30
-30 199 116 29 31
-31 200 117 30 32
-32 33 201 118 31
-33 34 202 119 32
-34 33 35 203 120
-35 121 34 36 204
-36 122 35 37 205
-37 123 36 38 206
-38 124 37 39 207
-39 125 38 40 208
-40 209 126 39 41
-41 210 127 40 42
-42 211 128 41 43
-43 44 212 129 42
-44 45 213 130 43
-45 44 46 214 131
-46 132 45 47 215
-47 133 46 48 216
-48 134 47 49 217
-49 135 48 50 218
-50 136 49 51 219
-51 220 137 50 52
-52 221 138 51 53
-53 222 139 52 54
-54 55 223 140 53
-55 56 224 141 54
-56 55 57 225 142
-57 143 56 58 226
-58 144 57 59 227
-59 145 58 60 228
-60 146 59 61 229
-61 147 60 62 230
-62 231 148 61 63
-63 232 149 62 64
-64 233 150 63 65
-65 66 234 151 64
-66 67 235 152 65
-67 66 68 236 153
-68 154 67 69 237
-69 155 68 70 238
-70 156 69 71 239
-71 157 70 72 240
-72 158 71 73 241
-73 242 159 72 74
-74 243 160 73 75
-75 244 161 74 76
-76 77 245 162 75
-77 78 246 163 76
-78 77 79 247 164
-79 165 78 80 248
-80 166 79 81 249
-81 167 80 82 250
-82 168 81 83 251
-83 169 82 84 252
-84 253 170 83 85
-85 254 171 84 86
-86 255 172 85 87
-87 88 1 173 86
-88 89 2 174 87
-89 88 90 3 175
-90 176 89 91 4
-91 177 90 92 5
-92 178 91 93 6
-93 179 92 94 7
-94 180 93 95 8
-95 181 94 96 9
-96 182 95 97 10
-97 11 183 96 98
-98 99 12 184 97
-99 100 13 185 98
-100 99 101 14 186
-101 187 100 102 15
-102 188 101 103 16
-103 189 102 104 17
-104 190 103 105 18
-105 191 104 106 19
-106 192 105 107 20
-107 193 106 108 21
-108 22 194 107 109
-109 110 23 195 108
-110 111 24 196 109
-111 110 112 25 197
-112 198 111 113 26
-113 199 112 114 27
-114 200 113 115 28
-115 201 114 116 29
-116 202 115 117 30
-117 203 116 118 31
-118 204 117 119 32
-119 33 205 118 120
-120 121 34 206 119
-121 122 35 207 120
-122 121 123 36 208
-123 209 122 124 37
-124 210 123 125 38
-125 211 124 126 39
-126 212 125 127 40
-127 213 126 128 41
-128 214 127 129 42
-129 215 128 130 43
-130 44 216 129 131
-131 132 45 217 130
-132 133 46 218 131
-133 132 134 47 219
-134 220 133 135 48
-135 221 134 136 49
-136 222 135 137 50
-137 223 136 138 51
-138 224 137 139 52
-139 225 138 140 53
-140 226 139 141 54
-141 55 227 140 142
-142 143 56 228 141
-143 144 57 229 142
-144 143 145 58 230
-145 231 144 146 59
-146 232 145 147 60
-147 233 146 148 61
-148 234 147 149 62
-149 235 148 150 63
-150 236 149 151 64
-151 237 150 152 65
-152 66 238 151 153
-153 154 67 239 152
-154 155 68 240 153
-155 154 156 69 241
-156 242 155 157 70
-157 243 156 158 71
-158 244 157 159 72
-159 245 158 160 73
-160 246 159 161 74
-161 247 160 162 75
-162 248 161 163 76
-163 77 249 162 164
-164 165 78 250 163
-165 166 79 251 164
-166 165 167 80 252
-167 253 166 168 81
-168 254 167 169 82
-169 255 168 170 83
-170 1 169 171 84
-171 2 170 172 85
-172 3 171 173 86
-173 4 172 174 87
-174 88 5 173 175
-175 176 89 6 174
-176 177 90 7 175
-177 176 178 91 8
-178 177 179 92 9
-179 178 180 93 10
-180 11 179 181 94
-181 12 180 182 95
-182 13 181 183 96
-183 14 182 184 97
-184 15 183 185 98
-185 99 16 184 186
-186 187 100 17 185
-187 188 101 18 186
-188 187 189 102 19
-189 188 190 103 20
-190 189 191 104 21
-191 22 190 192 105
-192 23 191 193 106
-193 24 192 194 107
-194 25 193 195 108
-195 26 194 196 109
-196 110 27 195 197
-197 198 111 28 196
-198 199 112 29 197
-199 198 200 113 30
-200 199 201 114 31
-201 200 202 115 32
-202 33 201 203 116
-203 34 202 204 117
-204 35 203 205 118
-205 36 204 206 119
-206 37 205 207 120
-207 121 38 206 208
-208 209 122 39 207
-209 210 123 40 208
-210 209 211 124 41
-211 210 212 125 42
-212 211 213 126 43
-213 44 212 214 127
-214 45 213 215 128
-215 46 214 216 129
-216 47 215 217 130
-217 48 216 218 131
-218 132 49 217 219
-219 220 133 50 218
-220 221 134 51 219
-221 220 222 135 52
-222 221 223 136 53
-223 222 224 137 54
-224 55 223 225 138
-225 56 224 226 139
-226 57 225 227 140
-227 58 226 228 141
-228 59 227 229 142
-229 143 60 228 230
-230 231 144 61 229
-231 232 145 62 230
-232 231 233 146 63
-233 232 234 147 64
-234 233 235 148 65
-235 66 234 236 149
-236 67 235 237 150
-237 68 236 238 151
-238 69 237 239 152
-239 70 238 240 153
-240 154 71 239 241
-241 242 155 72 240
-242 243 156 73 241
-243 242 244 157 74
-244 243 245 158 75
-245 244 246 159 76
-246 77 245 247 160
-247 78 246 248 161
-248 79 247 249 162
-249 80 248 250 163
-250 81 249 251 164
-251 165 82 250 252
-252 253 166 83 251
-253 254 167 84 252
-254 253 255 168 85
-255 1 254 169 86
0

**************