C4graphGraph forms for C4 [ 255, 3 ] = C_255(1,101)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 255, 3 ] = C_255(1,101).

(I) Following is a form readable by MAGMA:

g:=Graph<255|{ {2, 3}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {1, 2}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {3, 4}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {195, 196}, {7, 8}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {2, 103}, {8, 109}, {10, 111}, {16, 117}, {18, 119}, {24, 125}, {26, 127}, {128, 229}, {130, 231}, {136, 237}, {138, 239}, {144, 245}, {146, 247}, {152, 253}, {154, 255}, {1, 102}, {9, 110}, {17, 118}, {25, 126}, {129, 230}, {137, 238}, {145, 246}, {153, 254}, {3, 104}, {7, 108}, {19, 120}, {23, 124}, {131, 232}, {135, 236}, {147, 248}, {151, 252}, {4, 105}, {6, 107}, {20, 121}, {22, 123}, {132, 233}, {134, 235}, {148, 249}, {150, 251}, {5, 106}, {21, 122}, {133, 234}, {149, 250}, {11, 112}, {15, 116}, {139, 240}, {143, 244}, {12, 113}, {14, 115}, {140, 241}, {142, 243}, {13, 114}, {63, 64}, {141, 242}, {191, 192}, {1, 155}, {69, 223}, {68, 222}, {65, 219}, {64, 218}, {4, 158}, {5, 159}, {32, 186}, {33, 187}, {36, 190}, {37, 191}, {96, 250}, {97, 251}, {100, 254}, {101, 255}, {27, 128}, {91, 192}, {63, 164}, {59, 160}, {31, 132}, {95, 196}, {123, 224}, {127, 228}, {28, 129}, {62, 163}, {60, 161}, {30, 131}, {92, 193}, {94, 195}, {124, 225}, {126, 227}, {2, 156}, {67, 221}, {66, 220}, {3, 157}, {34, 188}, {35, 189}, {98, 252}, {99, 253}, {29, 130}, {61, 162}, {93, 194}, {125, 226}, {32, 133}, {58, 159}, {56, 157}, {34, 135}, {40, 141}, {42, 143}, {48, 149}, {50, 151}, {96, 197}, {98, 199}, {104, 205}, {106, 207}, {112, 213}, {114, 215}, {120, 221}, {122, 223}, {6, 160}, {87, 241}, {86, 240}, {79, 233}, {78, 232}, {71, 225}, {70, 224}, {7, 161}, {14, 168}, {15, 169}, {22, 176}, {23, 177}, {30, 184}, {31, 185}, {94, 248}, {95, 249}, {33, 134}, {57, 158}, {41, 142}, {49, 150}, {97, 198}, {105, 206}, {113, 214}, {121, 222}, {8, 162}, {89, 243}, {88, 242}, {77, 231}, {76, 230}, {73, 227}, {72, 226}, {9, 163}, {12, 166}, {13, 167}, {24, 178}, {25, 179}, {28, 182}, {29, 183}, {92, 246}, {93, 247}, {35, 136}, {39, 140}, {51, 152}, {55, 156}, {99, 200}, {103, 204}, {115, 216}, {119, 220}, {36, 137}, {38, 139}, {52, 153}, {54, 155}, {100, 201}, {102, 203}, {116, 217}, {118, 219}, {10, 164}, {91, 245}, {90, 244}, {75, 229}, {74, 228}, {11, 165}, {26, 180}, {27, 181}, {37, 138}, {53, 154}, {101, 202}, {117, 218}, {16, 170}, {85, 239}, {84, 238}, {81, 235}, {80, 234}, {17, 171}, {20, 174}, {21, 175}, {43, 144}, {47, 148}, {107, 208}, {111, 212}, {44, 145}, {46, 147}, {108, 209}, {110, 211}, {18, 172}, {83, 237}, {82, 236}, {19, 173}, {45, 146}, {109, 210}, {64, 165}, {90, 191}, {88, 189}, {82, 183}, {80, 181}, {74, 175}, {72, 173}, {66, 167}, {38, 192}, {63, 217}, {62, 216}, {39, 193}, {46, 200}, {47, 201}, {54, 208}, {55, 209}, {65, 166}, {89, 190}, {81, 182}, {73, 174}, {40, 194}, {61, 215}, {60, 214}, {57, 211}, {56, 210}, {41, 195}, {44, 198}, {45, 199}, {67, 168}, {87, 188}, {83, 184}, {71, 172}, {68, 169}, {86, 187}, {84, 185}, {70, 171}, {42, 196}, {59, 213}, {58, 212}, {43, 197}, {69, 170}, {85, 186}, {48, 202}, {49, 203}, {52, 206}, {53, 207}, {75, 176}, {79, 180}, {76, 177}, {78, 179}, {1, 255}, {50, 204}, {51, 205}, {77, 178}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 102)(3, 203)(4, 49)(5, 150)(6, 251)(7, 97)(8, 198)(9, 44)(10, 145)(11, 246)(12, 92)(13, 193)(14, 39)(15, 140)(16, 241)(17, 87)(18, 188)(19, 34)(20, 135)(21, 236)(22, 82)(23, 183)(24, 29)(25, 130)(26, 231)(27, 77)(28, 178)(30, 125)(31, 226)(32, 72)(33, 173)(35, 120)(36, 221)(37, 67)(38, 168)(40, 115)(41, 216)(42, 62)(43, 163)(45, 110)(46, 211)(47, 57)(48, 158)(50, 105)(51, 206)(53, 153)(54, 254)(55, 100)(56, 201)(58, 148)(59, 249)(60, 95)(61, 196)(63, 143)(64, 244)(65, 90)(66, 191)(68, 138)(69, 239)(70, 85)(71, 186)(73, 133)(74, 234)(75, 80)(76, 181)(78, 128)(79, 229)(81, 176)(83, 123)(84, 224)(86, 171)(88, 118)(89, 219)(91, 166)(93, 113)(94, 214)(96, 161)(98, 108)(99, 209)(101, 156)(104, 204)(106, 151)(107, 252)(109, 199)(111, 146)(112, 247)(114, 194)(116, 141)(117, 242)(119, 189)(121, 136)(122, 237)(124, 184)(126, 131)(127, 232)(129, 179)(132, 227)(134, 174)(137, 222)(139, 169)(142, 217)(144, 164)(147, 212)(149, 159)(152, 207)(155, 255)(157, 202)(160, 250)(162, 197)(165, 245)(167, 192)(170, 240)(172, 187)(175, 235)(177, 182)(180, 230)(185, 225)(190, 220)(195, 215)(200, 210)(208, 253)(213, 248)(218, 243)(223, 238)(228, 233)
b: (2, 155)(3, 54)(4, 208)(5, 107)(7, 160)(8, 59)(9, 213)(10, 112)(12, 165)(13, 64)(14, 218)(15, 117)(17, 170)(18, 69)(19, 223)(20, 122)(22, 175)(23, 74)(24, 228)(25, 127)(27, 180)(28, 79)(29, 233)(30, 132)(32, 185)(33, 84)(34, 238)(35, 137)(37, 190)(38, 89)(39, 243)(40, 142)(42, 195)(43, 94)(44, 248)(45, 147)(47, 200)(48, 99)(49, 253)(50, 152)(52, 205)(53, 104)(55, 157)(57, 210)(58, 109)(60, 162)(62, 215)(63, 114)(65, 167)(67, 220)(68, 119)(70, 172)(72, 225)(73, 124)(75, 177)(77, 230)(78, 129)(80, 182)(82, 235)(83, 134)(85, 187)(87, 240)(88, 139)(90, 192)(92, 245)(93, 144)(95, 197)(97, 250)(98, 149)(100, 202)(102, 255)(103, 154)(105, 207)(108, 159)(110, 212)(113, 164)(115, 217)(118, 169)(120, 222)(123, 174)(125, 227)(128, 179)(130, 232)(133, 184)(135, 237)(138, 189)(140, 242)(143, 194)(145, 247)(148, 199)(150, 252)(153, 204)(158, 209)(163, 214)(168, 219)(173, 224)(178, 229)(183, 234)(188, 239)(193, 244)(198, 249)(203, 254)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 255, 3 ]
255
-1 155 2 255 102
-2 1 156 3 103
-3 2 157 4 104
-4 3 158 5 105
-5 4 159 6 106
-6 5 160 7 107
-7 6 161 8 108
-8 7 162 9 109
-9 110 8 163 10
-10 11 111 9 164
-11 165 12 112 10
-12 11 166 13 113
-13 12 167 14 114
-14 13 168 15 115
-15 14 169 16 116
-16 15 170 17 117
-17 16 171 18 118
-18 17 172 19 119
-19 18 173 20 120
-20 121 19 174 21
-21 22 122 20 175
-22 176 23 123 21
-23 22 177 24 124
-24 23 178 25 125
-25 24 179 26 126
-26 25 180 27 127
-27 26 181 28 128
-28 27 182 29 129
-29 28 183 30 130
-30 29 184 31 131
-31 132 30 185 32
-32 33 133 31 186
-33 187 34 134 32
-34 33 188 35 135
-35 34 189 36 136
-36 35 190 37 137
-37 36 191 38 138
-38 37 192 39 139
-39 38 193 40 140
-40 39 194 41 141
-41 40 195 42 142
-42 143 41 196 43
-43 44 144 42 197
-44 198 45 145 43
-45 44 199 46 146
-46 45 200 47 147
-47 46 201 48 148
-48 47 202 49 149
-49 48 203 50 150
-50 49 204 51 151
-51 50 205 52 152
-52 51 206 53 153
-53 154 52 207 54
-54 55 155 53 208
-55 209 56 156 54
-56 55 210 57 157
-57 56 211 58 158
-58 57 212 59 159
-59 58 213 60 160
-60 59 214 61 161
-61 60 215 62 162
-62 61 216 63 163
-63 62 217 64 164
-64 165 63 218 65
-65 66 166 64 219
-66 220 67 167 65
-67 66 221 68 168
-68 67 222 69 169
-69 68 223 70 170
-70 69 224 71 171
-71 70 225 72 172
-72 71 226 73 173
-73 72 227 74 174
-74 73 228 75 175
-75 176 74 229 76
-76 77 177 75 230
-77 231 78 178 76
-78 77 232 79 179
-79 78 233 80 180
-80 79 234 81 181
-81 80 235 82 182
-82 81 236 83 183
-83 82 237 84 184
-84 83 238 85 185
-85 84 239 86 186
-86 187 85 240 87
-87 88 188 86 241
-88 242 89 189 87
-89 88 243 90 190
-90 89 244 91 191
-91 90 245 92 192
-92 91 246 93 193
-93 92 247 94 194
-94 93 248 95 195
-95 94 249 96 196
-96 95 250 97 197
-97 198 96 251 98
-98 99 199 97 252
-99 253 100 200 98
-100 99 254 101 201
-101 100 255 102 202
-102 1 101 103 203
-103 2 102 104 204
-104 3 103 105 205
-105 4 104 106 206
-106 5 105 107 207
-107 6 106 108 208
-108 209 7 107 109
-109 110 210 8 108
-110 111 211 9 109
-111 110 112 212 10
-112 11 111 113 213
-113 12 112 114 214
-114 13 113 115 215
-115 14 114 116 216
-116 15 115 117 217
-117 16 116 118 218
-118 17 117 119 219
-119 220 18 118 120
-120 121 221 19 119
-121 122 222 20 120
-122 121 123 223 21
-123 22 122 124 224
-124 23 123 125 225
-125 24 124 126 226
-126 25 125 127 227
-127 26 126 128 228
-128 27 127 129 229
-129 28 128 130 230
-130 231 29 129 131
-131 132 232 30 130
-132 133 233 31 131
-133 132 134 234 32
-134 33 133 135 235
-135 34 134 136 236
-136 35 135 137 237
-137 36 136 138 238
-138 37 137 139 239
-139 38 138 140 240
-140 39 139 141 241
-141 242 40 140 142
-142 143 243 41 141
-143 144 244 42 142
-144 143 145 245 43
-145 44 144 146 246
-146 45 145 147 247
-147 46 146 148 248
-148 47 147 149 249
-149 48 148 150 250
-150 49 149 151 251
-151 50 150 152 252
-152 253 51 151 153
-153 154 254 52 152
-154 155 255 53 153
-155 154 1 156 54
-156 55 155 2 157
-157 56 156 3 158
-158 57 157 4 159
-159 58 158 5 160
-160 59 159 6 161
-161 60 160 7 162
-162 61 161 8 163
-163 62 162 9 164
-164 165 63 163 10
-165 11 166 64 164
-166 165 12 167 65
-167 66 166 13 168
-168 67 167 14 169
-169 68 168 15 170
-170 69 169 16 171
-171 70 170 17 172
-172 71 171 18 173
-173 72 172 19 174
-174 73 173 20 175
-175 176 74 174 21
-176 22 177 75 175
-177 176 23 178 76
-178 77 177 24 179
-179 78 178 25 180
-180 79 179 26 181
-181 80 180 27 182
-182 81 181 28 183
-183 82 182 29 184
-184 83 183 30 185
-185 84 184 31 186
-186 187 85 185 32
-187 33 188 86 186
-188 187 34 189 87
-189 88 188 35 190
-190 89 189 36 191
-191 90 190 37 192
-192 91 191 38 193
-193 92 192 39 194
-194 93 193 40 195
-195 94 194 41 196
-196 95 195 42 197
-197 198 96 196 43
-198 44 199 97 197
-199 198 45 200 98
-200 99 199 46 201
-201 100 200 47 202
-202 101 201 48 203
-203 102 202 49 204
-204 103 203 50 205
-205 104 204 51 206
-206 105 205 52 207
-207 106 206 53 208
-208 209 107 207 54
-209 55 210 108 208
-210 209 56 211 109
-211 110 210 57 212
-212 111 211 58 213
-213 112 212 59 214
-214 113 213 60 215
-215 114 214 61 216
-216 115 215 62 217
-217 116 216 63 218
-218 117 217 64 219
-219 220 118 218 65
-220 66 221 119 219
-221 220 67 222 120
-222 121 221 68 223
-223 122 222 69 224
-224 123 223 70 225
-225 124 224 71 226
-226 125 225 72 227
-227 126 226 73 228
-228 127 227 74 229
-229 128 228 75 230
-230 231 129 229 76
-231 77 232 130 230
-232 231 78 233 131
-233 132 232 79 234
-234 133 233 80 235
-235 134 234 81 236
-236 135 235 82 237
-237 136 236 83 238
-238 137 237 84 239
-239 138 238 85 240
-240 139 239 86 241
-241 242 140 240 87
-242 88 243 141 241
-243 242 89 244 142
-244 143 243 90 245
-245 144 244 91 246
-246 145 245 92 247
-247 146 246 93 248
-248 147 247 94 249
-249 148 248 95 250
-250 149 249 96 251
-251 150 250 97 252
-252 253 151 251 98
-253 99 254 152 252
-254 253 100 255 153
-255 154 1 254 101
0

**************