[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 2 ] =
{4,4}_16,0.
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {2, 3}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246,
247}, {244, 245}, {242, 243}, {238, 239}, {236, 237}, {234, 235}, {232, 233},
{230, 231}, {228, 229}, {226, 227}, {222, 223}, {220, 221}, {218, 219}, {216,
217}, {214, 215}, {212, 213}, {210, 211}, {206, 207}, {114, 115}, {110, 111},
{108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {94, 95},
{92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {78, 79}, {76, 77},
{74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {4, 5}, {6, 7}, {8, 9}, {10,
11}, {12, 13}, {14, 15}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28,
29}, {30, 31}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46,
47}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {116,
117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {130, 131},
{132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {146,
147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159},
{162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174,
175}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189},
{190, 191}, {194, 195}, {196, 197}, {198, 199}, {200, 201}, {202, 203}, {204,
205}, {1, 2}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233,
234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210},
{205, 206}, {113, 114}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94},
{89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {5, 6}, {9, 10},
{13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42},
{45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {117, 118}, {121,
122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146},
{149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173,
174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {197, 198},
{201, 202}, {3, 4}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220},
{211, 212}, {115, 116}, {107, 108}, {99, 100}, {91, 92}, {83, 84}, {75, 76},
{67, 68}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {59, 60},
{123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171,
172}, {179, 180}, {187, 188}, {195, 196}, {203, 204}, {7, 8}, {247, 248}, {231,
232}, {215, 216}, {103, 104}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56},
{119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {199, 200}, {1, 17},
{239, 255}, {238, 254}, {237, 253}, {236, 252}, {235, 251}, {234, 250}, {233,
249}, {232, 248}, {231, 247}, {230, 246}, {229, 245}, {228, 244}, {227, 243},
{226, 242}, {225, 241}, {224, 240}, {207, 223}, {206, 222}, {205, 221}, {204,
220}, {111, 127}, {110, 126}, {109, 125}, {108, 124}, {107, 123}, {106, 122},
{105, 121}, {104, 120}, {103, 119}, {102, 118}, {101, 117}, {100, 116}, {99,
115}, {98, 114}, {97, 113}, {96, 112}, {79, 95}, {78, 94}, {77, 93}, {76, 92},
{75, 91}, {74, 90}, {73, 89}, {72, 88}, {71, 87}, {70, 86}, {69, 85}, {68, 84},
{67, 83}, {66, 82}, {65, 81}, {2, 18}, {3, 19}, {4, 20}, {5, 21}, {6, 22}, {7,
23}, {8, 24}, {9, 25}, {10, 26}, {11, 27}, {12, 28}, {13, 29}, {14, 30}, {15,
31}, {32, 48}, {33, 49}, {34, 50}, {35, 51}, {36, 52}, {37, 53}, {38, 54}, {39,
55}, {40, 56}, {41, 57}, {42, 58}, {43, 59}, {44, 60}, {45, 61}, {46, 62}, {47,
63}, {64, 80}, {128, 144}, {129, 145}, {130, 146}, {131, 147}, {132, 148}, {133,
149}, {134, 150}, {135, 151}, {136, 152}, {137, 153}, {138, 154}, {139, 155},
{140, 156}, {141, 157}, {142, 158}, {143, 159}, {160, 176}, {161, 177}, {162,
178}, {163, 179}, {164, 180}, {165, 181}, {166, 182}, {167, 183}, {168, 184},
{169, 185}, {170, 186}, {171, 187}, {172, 188}, {173, 189}, {174, 190}, {175,
191}, {192, 208}, {193, 209}, {194, 210}, {195, 211}, {196, 212}, {197, 213},
{198, 214}, {199, 215}, {200, 216}, {201, 217}, {202, 218}, {203, 219}, {1, 16},
{225, 240}, {97, 112}, {65, 80}, {33, 48}, {129, 144}, {161, 176}, {193, 208},
{15, 16}, {239, 240}, {207, 208}, {111, 112}, {79, 80}, {47, 48}, {143, 144},
{175, 176}, {16, 32}, {223, 239}, {222, 238}, {221, 237}, {220, 236}, {219,
235}, {218, 234}, {217, 233}, {216, 232}, {215, 231}, {214, 230}, {213, 229},
{212, 228}, {211, 227}, {210, 226}, {209, 225}, {208, 224}, {95, 111}, {94,
110}, {93, 109}, {92, 108}, {91, 107}, {90, 106}, {89, 105}, {88, 104}, {87,
103}, {86, 102}, {85, 101}, {84, 100}, {83, 99}, {82, 98}, {81, 97}, {80, 96},
{17, 33}, {18, 34}, {19, 35}, {20, 36}, {21, 37}, {22, 38}, {23, 39}, {24, 40},
{25, 41}, {26, 42}, {27, 43}, {28, 44}, {29, 45}, {30, 46}, {31, 47}, {144,
160}, {145, 161}, {146, 162}, {147, 163}, {148, 164}, {149, 165}, {150, 166},
{151, 167}, {152, 168}, {153, 169}, {154, 170}, {155, 171}, {156, 172}, {157,
173}, {158, 174}, {159, 175}, {17, 32}, {209, 224}, {81, 96}, {145, 160}, {31,
32}, {223, 224}, {95, 96}, {159, 160}, {48, 64}, {49, 65}, {50, 66}, {51, 67},
{52, 68}, {53, 69}, {54, 70}, {55, 71}, {56, 72}, {57, 73}, {58, 74}, {59, 75},
{60, 76}, {61, 77}, {62, 78}, {63, 79}, {176, 192}, {177, 193}, {178, 194},
{179, 195}, {180, 196}, {181, 197}, {182, 198}, {183, 199}, {184, 200}, {185,
201}, {186, 202}, {187, 203}, {188, 204}, {189, 205}, {190, 206}, {191, 207},
{49, 64}, {177, 192}, {63, 64}, {191, 192}, {1, 241}, {114, 130}, {113, 129},
{112, 128}, {2, 242}, {3, 243}, {4, 244}, {5, 245}, {6, 246}, {7, 247}, {8,
248}, {9, 249}, {10, 250}, {11, 251}, {12, 252}, {13, 253}, {14, 254}, {15,
255}, {115, 131}, {116, 132}, {117, 133}, {118, 134}, {119, 135}, {120, 136},
{121, 137}, {122, 138}, {123, 139}, {124, 140}, {125, 141}, {126, 142}, {127,
143}, {113, 128}, {127, 128}, {16, 256}, {240, 256}, {241, 256}, {255, 256}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 16)(3, 15)(4, 14)(5, 13)(6, 12)(7, 11)(8, 10)(18, 32)(19, 31)(20, 30)(21,
29)(22, 28)(23, 27)(24, 26)(34, 48)(35, 47)(36, 46)(37, 45)(38, 44)(39, 43)(40,
42)(50, 64)(51, 63)(52, 62)(53, 61)(54, 60)(55, 59)(56, 58)(66, 80)(67, 79)(68,
78)(69, 77)(70, 76)(71, 75)(72, 74)(82, 96)(83, 95)(84, 94)(85, 93)(86, 92)(87,
91)(88, 90)(98, 112)(99, 111)(100, 110)(101, 109)(102, 108)(103, 107)(104,
106)(114, 128)(115, 127)(116, 126)(117, 125)(118, 124)(119, 123)(120, 122)(130,
144)(131, 143)(132, 142)(133, 141)(134, 140)(135, 139)(136, 138)(146, 160)(147,
159)(148, 158)(149, 157)(150, 156)(151, 155)(152, 154)(162, 176)(163, 175)(164,
174)(165, 173)(166, 172)(167, 171)(168, 170)(178, 192)(179, 191)(180, 190)(181,
189)(182, 188)(183, 187)(184, 186)(194, 208)(195, 207)(196, 206)(197, 205)(198,
204)(199, 203)(200, 202)(210, 224)(211, 223)(212, 222)(213, 221)(214, 220)(215,
219)(216, 218)(226, 240)(227, 239)(228, 238)(229, 237)(230, 236)(231, 235)(232,
234)(242, 256)(243, 255)(244, 254)(245, 253)(246, 252)(247, 251)(248, 250) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 17)(3, 33)(4, 49)(5, 65)(6, 81)(7, 97)(8, 113)(9, 129)(10, 145)(11,
161)(12, 177)(13, 193)(14, 209)(15, 225)(16, 241)(19, 34)(20, 50)(21, 66)(22,
82)(23, 98)(24, 114)(25, 130)(26, 146)(27, 162)(28, 178)(29, 194)(30, 210)(31,
226)(32, 242)(36, 51)(37, 67)(38, 83)(39, 99)(40, 115)(41, 131)(42, 147)(43,
163)(44, 179)(45, 195)(46, 211)(47, 227)(48, 243)(53, 68)(54, 84)(55, 100)(56,
116)(57, 132)(58, 148)(59, 164)(60, 180)(61, 196)(62, 212)(63, 228)(64, 244)(70,
85)(71, 101)(72, 117)(73, 133)(74, 149)(75, 165)(76, 181)(77, 197)(78, 213)(79,
229)(80, 245)(87, 102)(88, 118)(89, 134)(90, 150)(91, 166)(92, 182)(93, 198)(94,
214)(95, 230)(96, 246)(104, 119)(105, 135)(106, 151)(107, 167)(108, 183)(109,
199)(110, 215)(111, 231)(112, 247)(121, 136)(122, 152)(123, 168)(124, 184)(125,
200)(126, 216)(127, 232)(128, 248)(138, 153)(139, 169)(140, 185)(141, 201)(142,
217)(143, 233)(144, 249)(155, 170)(156, 186)(157, 202)(158, 218)(159, 234)(160,
250)(172, 187)(173, 203)(174, 219)(175, 235)(176, 251)(189, 204)(190, 220)(191,
236)(192, 252)(206, 221)(207, 237)(208, 253)(223, 238)(224, 254)(240, 255)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)(17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32)(33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48)(49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64)(65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80)(81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96)(97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112)(113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128)(129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144)(145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160)(161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176)(177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192)(193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208)(209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224)(225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240)(241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256)
C4[ 256, 2 ]
256
-1 2 16 17 241
-2 242 1 3 18
-3 243 2 4 19
-4 244 3 5 20
-5 245 4 6 21
-6 22 246 5 7
-7 23 247 6 8
-8 24 248 7 9
-9 25 249 8 10
-10 11 26 250 9
-11 12 27 251 10
-12 11 13 28 252
-13 253 12 14 29
-14 254 13 15 30
-15 255 14 16 31
-16 1 256 15 32
-17 33 1 18 32
-18 34 2 17 19
-19 35 3 18 20
-20 36 4 19 21
-21 22 37 5 20
-22 23 38 6 21
-23 22 24 39 7
-24 23 25 40 8
-25 24 26 41 9
-26 25 27 42 10
-27 11 26 28 43
-28 44 12 27 29
-29 45 13 28 30
-30 46 14 29 31
-31 47 15 30 32
-32 48 16 17 31
-33 34 48 49 17
-34 33 35 50 18
-35 34 36 51 19
-36 35 37 52 20
-37 36 38 53 21
-38 22 37 39 54
-39 55 23 38 40
-40 56 24 39 41
-41 57 25 40 42
-42 58 26 41 43
-43 44 59 27 42
-44 45 60 28 43
-45 44 46 61 29
-46 45 47 62 30
-47 46 48 63 31
-48 33 47 64 32
-49 33 50 64 65
-50 66 34 49 51
-51 67 35 50 52
-52 68 36 51 53
-53 69 37 52 54
-54 55 70 38 53
-55 56 71 39 54
-56 55 57 72 40
-57 56 58 73 41
-58 57 59 74 42
-59 58 60 75 43
-60 44 59 61 76
-61 77 45 60 62
-62 78 46 61 63
-63 79 47 62 64
-64 80 48 49 63
-65 66 80 81 49
-66 67 82 50 65
-67 66 68 83 51
-68 67 69 84 52
-69 68 70 85 53
-70 69 71 86 54
-71 55 70 72 87
-72 88 56 71 73
-73 89 57 72 74
-74 90 58 73 75
-75 91 59 74 76
-76 77 92 60 75
-77 78 93 61 76
-78 77 79 94 62
-79 78 80 95 63
-80 79 96 64 65
-81 82 96 97 65
-82 66 81 83 98
-83 99 67 82 84
-84 100 68 83 85
-85 101 69 84 86
-86 102 70 85 87
-87 88 103 71 86
-88 89 104 72 87
-89 88 90 105 73
-90 89 91 106 74
-91 90 92 107 75
-92 91 93 108 76
-93 77 92 94 109
-94 110 78 93 95
-95 111 79 94 96
-96 112 80 81 95
-97 112 113 81 98
-98 99 114 82 97
-99 100 115 83 98
-100 99 101 116 84
-101 100 102 117 85
-102 101 103 118 86
-103 102 104 119 87
-104 88 103 105 120
-105 121 89 104 106
-106 122 90 105 107
-107 123 91 106 108
-108 124 92 107 109
-109 110 125 93 108
-110 111 126 94 109
-111 110 112 127 95
-112 111 128 96 97
-113 114 128 129 97
-114 113 115 130 98
-115 99 114 116 131
-116 132 100 115 117
-117 133 101 116 118
-118 134 102 117 119
-119 135 103 118 120
-120 121 136 104 119
-121 122 137 105 120
-122 121 123 138 106
-123 122 124 139 107
-124 123 125 140 108
-125 124 126 141 109
-126 110 125 127 142
-127 143 111 126 128
-128 144 112 113 127
-129 144 145 113 130
-130 146 114 129 131
-131 132 147 115 130
-132 133 148 116 131
-133 132 134 149 117
-134 133 135 150 118
-135 134 136 151 119
-136 135 137 152 120
-137 121 136 138 153
-138 154 122 137 139
-139 155 123 138 140
-140 156 124 139 141
-141 157 125 140 142
-142 143 158 126 141
-143 144 159 127 142
-144 143 160 128 129
-145 146 160 161 129
-146 145 147 162 130
-147 146 148 163 131
-148 132 147 149 164
-149 165 133 148 150
-150 166 134 149 151
-151 167 135 150 152
-152 168 136 151 153
-153 154 169 137 152
-154 155 170 138 153
-155 154 156 171 139
-156 155 157 172 140
-157 156 158 173 141
-158 157 159 174 142
-159 143 158 160 175
-160 176 144 145 159
-161 176 177 145 162
-162 178 146 161 163
-163 179 147 162 164
-164 165 180 148 163
-165 166 181 149 164
-166 165 167 182 150
-167 166 168 183 151
-168 167 169 184 152
-169 168 170 185 153
-170 154 169 171 186
-171 187 155 170 172
-172 188 156 171 173
-173 189 157 172 174
-174 190 158 173 175
-175 176 191 159 174
-176 192 160 161 175
-177 178 192 193 161
-178 177 179 194 162
-179 178 180 195 163
-180 179 181 196 164
-181 165 180 182 197
-182 198 166 181 183
-183 199 167 182 184
-184 200 168 183 185
-185 201 169 184 186
-186 187 202 170 185
-187 188 203 171 186
-188 187 189 204 172
-189 188 190 205 173
-190 189 191 206 174
-191 190 192 207 175
-192 176 177 191 208
-193 209 177 194 208
-194 210 178 193 195
-195 211 179 194 196
-196 212 180 195 197
-197 198 213 181 196
-198 199 214 182 197
-199 198 200 215 183
-200 199 201 216 184
-201 200 202 217 185
-202 201 203 218 186
-203 187 202 204 219
-204 220 188 203 205
-205 221 189 204 206
-206 222 190 205 207
-207 223 191 206 208
-208 224 192 193 207
-209 210 224 225 193
-210 209 211 226 194
-211 210 212 227 195
-212 211 213 228 196
-213 212 214 229 197
-214 198 213 215 230
-215 231 199 214 216
-216 232 200 215 217
-217 233 201 216 218
-218 234 202 217 219
-219 220 235 203 218
-220 221 236 204 219
-221 220 222 237 205
-222 221 223 238 206
-223 222 224 239 207
-224 209 223 240 208
-225 209 226 240 241
-226 242 210 225 227
-227 243 211 226 228
-228 244 212 227 229
-229 245 213 228 230
-230 231 246 214 229
-231 232 247 215 230
-232 231 233 248 216
-233 232 234 249 217
-234 233 235 250 218
-235 234 236 251 219
-236 220 235 237 252
-237 253 221 236 238
-238 254 222 237 239
-239 255 223 238 240
-240 256 224 225 239
-241 242 1 256 225
-242 243 2 226 241
-243 242 244 3 227
-244 243 245 4 228
-245 244 246 5 229
-246 245 247 6 230
-247 231 246 248 7
-248 232 247 249 8
-249 233 248 250 9
-250 234 249 251 10
-251 11 235 250 252
-252 253 12 236 251
-253 254 13 237 252
-254 253 255 14 238
-255 254 256 15 239
-256 255 16 240 241
0