[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 256, 3 ]. See Glossary for some
detail.
{4, 4}_[ 16, 8] = PS( 32, 16; 1) = PS( 32, 16; 7)
= PS( 16, 32; 1) = PS( 16, 32; 15) = UG(ATD[256, 31])
= UG(ATD[256, 32]) = UG(ATD[256, 33]) = MG(Rmap(256,316) { 16, 32| 2}_ 32)
= DG(Rmap(256,316) { 16, 32| 2}_ 32) = MG(Rmap(256,327) { 16, 32| 8}_ 32) =
DG(Rmap(256,327) { 16, 32| 8}_ 32)
= DG(Rmap(256,332) { 32, 16| 2}_ 32) = DG(Rmap(256,343) { 32, 16| 8}_ 32) =
AT[256, 40]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 | 0 | - | - | - | 0 | 0 |
| 2 | 0 | - | 1 | 0 | - | - | - | 1 |
| 3 | 0 | 31 | - | 0 | 31 | - | - | - |
| 4 | - | 0 | 0 | - | 0 | 31 | - | - |
| 5 | - | - | 1 | 0 | - | 0 | 21 | - |
| 6 | - | - | - | 1 | 0 | - | 22 | 22 |
| 7 | 0 | - | - | - | 11 | 10 | - | 1 |
| 8 | 0 | 31 | - | - | - | 10 | 31 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 | 0 | - | - | - | 0 | 0 |
| 2 | 0 | - | 1 | 0 | - | - | - | 1 |
| 3 | 0 | 31 | - | 0 | 31 | - | - | - |
| 4 | - | 0 | 0 | - | 0 | 31 | - | - |
| 5 | - | - | 1 | 0 | - | 0 | 5 | - |
| 6 | - | - | - | 1 | 0 | - | 6 | 6 |
| 7 | 0 | - | - | - | 27 | 26 | - | 1 |
| 8 | 0 | 31 | - | - | - | 26 | 31 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | 1 31 | 0 2 | - | - | - | - | - | - |
| 2 | 0 30 | - | 0 2 | - | - | - | - | - |
| 3 | - | 0 30 | - | 0 2 | - | - | - | - |
| 4 | - | - | 0 30 | - | 0 2 | - | - | - |
| 5 | - | - | - | 0 30 | - | 0 2 | - | - |
| 6 | - | - | - | - | 0 30 | - | 0 2 | - |
| 7 | - | - | - | - | - | 0 30 | - | 0 2 |
| 8 | - | - | - | - | - | - | 0 30 | 1 31 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 | - | - | 0 26 | - | - | 0 |
| 2 | 0 | - | 0 | - | - | 0 26 | - | - |
| 3 | - | 0 | - | 0 | - | - | 0 26 | - |
| 4 | - | - | 0 | - | 1 | - | - | 1 7 |
| 5 | 0 6 | - | - | 31 | - | 0 | - | - |
| 6 | - | 0 6 | - | - | 0 | - | 0 | - |
| 7 | - | - | 0 6 | - | - | 0 | - | 7 |
| 8 | 0 | - | - | 25 31 | - | - | 25 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | 1 31 | 0 | - | - | - | - | - | 0 |
| 2 | 0 | 1 31 | 0 | - | - | - | - | - |
| 3 | - | 0 | 1 31 | 0 | - | - | - | - |
| 4 | - | - | 0 | 1 31 | 0 | - | - | - |
| 5 | - | - | - | 0 | 1 31 | 0 | - | - |
| 6 | - | - | - | - | 0 | 1 31 | 0 | - |
| 7 | - | - | - | - | - | 0 | 1 31 | 24 |
| 8 | 0 | - | - | - | - | - | 8 | 1 31 |