C4graphGraph forms for C4 [ 256, 4 ] = {4,4}_<20,12>

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 4 ] = {4,4}_<20,12>.

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {2, 3}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {1, 2}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {3, 4}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {7, 8}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {1, 65}, {191, 255}, {190, 254}, {189, 253}, {188, 252}, {187, 251}, {186, 250}, {185, 249}, {184, 248}, {183, 247}, {182, 246}, {181, 245}, {63, 127}, {62, 126}, {61, 125}, {60, 124}, {59, 123}, {58, 122}, {57, 121}, {56, 120}, {55, 119}, {54, 118}, {53, 117}, {52, 116}, {51, 115}, {50, 114}, {49, 113}, {48, 112}, {2, 66}, {3, 67}, {4, 68}, {5, 69}, {6, 70}, {7, 71}, {8, 72}, {9, 73}, {10, 74}, {11, 75}, {12, 76}, {13, 77}, {14, 78}, {15, 79}, {16, 80}, {17, 81}, {18, 82}, {19, 83}, {20, 84}, {21, 85}, {22, 86}, {23, 87}, {24, 88}, {25, 89}, {26, 90}, {27, 91}, {28, 92}, {29, 93}, {30, 94}, {31, 95}, {32, 96}, {33, 97}, {34, 98}, {35, 99}, {36, 100}, {37, 101}, {38, 102}, {39, 103}, {40, 104}, {41, 105}, {42, 106}, {43, 107}, {44, 108}, {45, 109}, {46, 110}, {47, 111}, {128, 192}, {129, 193}, {130, 194}, {131, 195}, {132, 196}, {133, 197}, {134, 198}, {135, 199}, {136, 200}, {137, 201}, {138, 202}, {139, 203}, {140, 204}, {141, 205}, {142, 206}, {143, 207}, {144, 208}, {145, 209}, {146, 210}, {147, 211}, {148, 212}, {149, 213}, {150, 214}, {151, 215}, {152, 216}, {153, 217}, {154, 218}, {155, 219}, {156, 220}, {157, 221}, {158, 222}, {159, 223}, {160, 224}, {161, 225}, {162, 226}, {163, 227}, {164, 228}, {165, 229}, {166, 230}, {167, 231}, {168, 232}, {169, 233}, {170, 234}, {171, 235}, {172, 236}, {173, 237}, {174, 238}, {175, 239}, {176, 240}, {177, 241}, {178, 242}, {179, 243}, {180, 244}, {1, 64}, {129, 192}, {63, 64}, {191, 192}, {64, 228}, {64, 128}, {91, 155}, {90, 154}, {89, 153}, {88, 152}, {87, 151}, {86, 150}, {85, 149}, {84, 148}, {83, 147}, {82, 146}, {81, 145}, {80, 144}, {79, 143}, {78, 142}, {77, 141}, {76, 140}, {75, 139}, {74, 138}, {73, 137}, {72, 136}, {71, 135}, {70, 134}, {69, 133}, {68, 132}, {67, 131}, {66, 130}, {65, 129}, {92, 156}, {93, 157}, {94, 158}, {95, 159}, {96, 160}, {97, 161}, {98, 162}, {99, 163}, {100, 164}, {101, 165}, {102, 166}, {103, 167}, {104, 168}, {105, 169}, {106, 170}, {107, 171}, {108, 172}, {109, 173}, {110, 174}, {111, 175}, {112, 176}, {113, 177}, {114, 178}, {115, 179}, {116, 180}, {117, 181}, {118, 182}, {119, 183}, {120, 184}, {121, 185}, {122, 186}, {123, 187}, {124, 188}, {125, 189}, {126, 190}, {127, 191}, {65, 128}, {29, 193}, {63, 227}, {62, 226}, {61, 225}, {60, 224}, {30, 194}, {31, 195}, {1, 229}, {59, 223}, {58, 222}, {57, 221}, {56, 220}, {51, 215}, {50, 214}, {49, 213}, {48, 212}, {2, 230}, {3, 231}, {8, 236}, {9, 237}, {10, 238}, {11, 239}, {16, 244}, {17, 245}, {18, 246}, {19, 247}, {24, 252}, {25, 253}, {26, 254}, {27, 255}, {32, 196}, {33, 197}, {34, 198}, {35, 199}, {40, 204}, {41, 205}, {42, 206}, {43, 207}, {4, 232}, {55, 219}, {54, 218}, {53, 217}, {52, 216}, {5, 233}, {6, 234}, {7, 235}, {20, 248}, {21, 249}, {22, 250}, {23, 251}, {36, 200}, {37, 201}, {38, 202}, {39, 203}, {12, 240}, {13, 241}, {14, 242}, {15, 243}, {44, 208}, {45, 209}, {46, 210}, {47, 211}, {127, 128}, {28, 256}, {192, 256}, {193, 256}, {255, 256} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 65)(3, 129)(4, 193)(5, 29)(6, 93)(7, 157)(8, 221)(9, 57)(10, 121)(11, 185)(12, 249)(13, 21)(14, 85)(15, 149)(16, 213)(17, 49)(18, 113)(19, 177)(20, 241)(22, 77)(23, 141)(24, 205)(25, 41)(26, 105)(27, 169)(28, 233)(30, 69)(31, 133)(32, 197)(34, 97)(35, 161)(36, 225)(37, 61)(38, 125)(39, 189)(40, 253)(42, 89)(43, 153)(44, 217)(45, 53)(46, 117)(47, 181)(48, 245)(50, 81)(51, 145)(52, 209)(54, 109)(55, 173)(56, 237)(58, 73)(59, 137)(60, 201)(62, 101)(63, 165)(64, 229)(67, 130)(68, 194)(70, 94)(71, 158)(72, 222)(74, 122)(75, 186)(76, 250)(78, 86)(79, 150)(80, 214)(82, 114)(83, 178)(84, 242)(87, 142)(88, 206)(90, 106)(91, 170)(92, 234)(95, 134)(96, 198)(99, 162)(100, 226)(102, 126)(103, 190)(104, 254)(107, 154)(108, 218)(110, 118)(111, 182)(112, 246)(115, 146)(116, 210)(119, 174)(120, 238)(123, 138)(124, 202)(127, 166)(128, 230)(132, 195)(135, 159)(136, 223)(139, 187)(140, 251)(143, 151)(144, 215)(147, 179)(148, 243)(152, 207)(155, 171)(156, 235)(160, 199)(164, 227)(167, 191)(168, 255)(172, 219)(175, 183)(176, 247)(180, 211)(184, 239)(188, 203)(192, 231)(200, 224)(204, 252)(208, 216)(212, 244)(220, 236)(232, 256)(240, 248)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64)(65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128)(129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192)(193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256)
c: (2, 64)(3, 63)(4, 62)(5, 61)(6, 60)(7, 59)(8, 58)(9, 57)(10, 56)(11, 55)(12, 54)(13, 53)(14, 52)(15, 51)(16, 50)(17, 49)(18, 48)(19, 47)(20, 46)(21, 45)(22, 44)(23, 43)(24, 42)(25, 41)(26, 40)(27, 39)(28, 38)(29, 37)(30, 36)(31, 35)(32, 34)(65, 229)(66, 228)(67, 227)(68, 226)(69, 225)(70, 224)(71, 223)(72, 222)(73, 221)(74, 220)(75, 219)(76, 218)(77, 217)(78, 216)(79, 215)(80, 214)(81, 213)(82, 212)(83, 211)(84, 210)(85, 209)(86, 208)(87, 207)(88, 206)(89, 205)(90, 204)(91, 203)(92, 202)(93, 201)(94, 200)(95, 199)(96, 198)(97, 197)(98, 196)(99, 195)(100, 194)(101, 193)(102, 256)(103, 255)(104, 254)(105, 253)(106, 252)(107, 251)(108, 250)(109, 249)(110, 248)(111, 247)(112, 246)(113, 245)(114, 244)(115, 243)(116, 242)(117, 241)(118, 240)(119, 239)(120, 238)(121, 237)(122, 236)(123, 235)(124, 234)(125, 233)(126, 232)(127, 231)(128, 230)(129, 165)(130, 164)(131, 163)(132, 162)(133, 161)(134, 160)(135, 159)(136, 158)(137, 157)(138, 156)(139, 155)(140, 154)(141, 153)(142, 152)(143, 151)(144, 150)(145, 149)(146, 148)(166, 192)(167, 191)(168, 190)(169, 189)(170, 188)(171, 187)(172, 186)(173, 185)(174, 184)(175, 183)(176, 182)(177, 181)(178, 180)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 4 ]
256
-1 2 64 229 65
-2 66 1 3 230
-3 231 67 2 4
-4 232 68 3 5
-5 233 69 4 6
-6 234 70 5 7
-7 235 71 6 8
-8 236 72 7 9
-9 237 73 8 10
-10 11 238 74 9
-11 12 239 75 10
-12 11 13 240 76
-13 77 12 14 241
-14 242 78 13 15
-15 243 79 14 16
-16 244 80 15 17
-17 245 81 16 18
-18 246 82 17 19
-19 247 83 18 20
-20 248 84 19 21
-21 22 249 85 20
-22 23 250 86 21
-23 22 24 251 87
-24 88 23 25 252
-25 253 89 24 26
-26 254 90 25 27
-27 255 91 26 28
-28 256 92 27 29
-29 93 28 193 30
-30 94 29 194 31
-31 95 30 195 32
-32 33 96 31 196
-33 34 97 32 197
-34 33 198 35 98
-35 99 34 199 36
-36 100 35 200 37
-37 101 36 201 38
-38 102 37 202 39
-39 103 38 203 40
-40 104 39 204 41
-41 105 40 205 42
-42 106 41 206 43
-43 44 107 42 207
-44 45 108 43 208
-45 44 209 46 109
-46 110 45 210 47
-47 111 46 211 48
-48 112 47 212 49
-49 113 48 213 50
-50 114 49 214 51
-51 115 50 215 52
-52 116 51 216 53
-53 117 52 217 54
-54 55 118 53 218
-55 56 119 54 219
-56 55 220 57 120
-57 121 56 221 58
-58 122 57 222 59
-59 123 58 223 60
-60 124 59 224 61
-61 125 60 225 62
-62 126 61 226 63
-63 127 62 227 64
-64 1 128 63 228
-65 66 1 128 129
-66 67 2 130 65
-67 66 68 3 131
-68 132 67 69 4
-69 133 68 70 5
-70 134 69 71 6
-71 135 70 72 7
-72 136 71 73 8
-73 137 72 74 9
-74 138 73 75 10
-75 11 139 74 76
-76 77 12 140 75
-77 78 13 141 76
-78 77 79 14 142
-79 143 78 80 15
-80 144 79 81 16
-81 145 80 82 17
-82 146 81 83 18
-83 147 82 84 19
-84 148 83 85 20
-85 149 84 86 21
-86 22 150 85 87
-87 88 23 151 86
-88 89 24 152 87
-89 88 90 25 153
-90 154 89 91 26
-91 155 90 92 27
-92 156 91 93 28
-93 157 92 94 29
-94 158 93 95 30
-95 159 94 96 31
-96 160 95 97 32
-97 33 161 96 98
-98 99 34 162 97
-99 100 35 163 98
-100 99 101 36 164
-101 165 100 102 37
-102 166 101 103 38
-103 167 102 104 39
-104 168 103 105 40
-105 169 104 106 41
-106 170 105 107 42
-107 171 106 108 43
-108 44 172 107 109
-109 110 45 173 108
-110 111 46 174 109
-111 110 112 47 175
-112 176 111 113 48
-113 177 112 114 49
-114 178 113 115 50
-115 179 114 116 51
-116 180 115 117 52
-117 181 116 118 53
-118 182 117 119 54
-119 55 183 118 120
-120 121 56 184 119
-121 122 57 185 120
-122 121 123 58 186
-123 187 122 124 59
-124 188 123 125 60
-125 189 124 126 61
-126 190 125 127 62
-127 191 126 128 63
-128 192 127 64 65
-129 192 193 130 65
-130 66 194 129 131
-131 132 67 195 130
-132 133 68 196 131
-133 132 134 69 197
-134 198 133 135 70
-135 199 134 136 71
-136 200 135 137 72
-137 201 136 138 73
-138 202 137 139 74
-139 203 138 140 75
-140 204 139 141 76
-141 77 205 140 142
-142 143 78 206 141
-143 144 79 207 142
-144 143 145 80 208
-145 209 144 146 81
-146 210 145 147 82
-147 211 146 148 83
-148 212 147 149 84
-149 213 148 150 85
-150 214 149 151 86
-151 215 150 152 87
-152 88 216 151 153
-153 154 89 217 152
-154 155 90 218 153
-155 154 156 91 219
-156 220 155 157 92
-157 221 156 158 93
-158 222 157 159 94
-159 223 158 160 95
-160 224 159 161 96
-161 225 160 162 97
-162 226 161 163 98
-163 99 227 162 164
-164 165 100 228 163
-165 166 101 229 164
-166 165 167 102 230
-167 231 166 168 103
-168 232 167 169 104
-169 233 168 170 105
-170 234 169 171 106
-171 235 170 172 107
-172 236 171 173 108
-173 237 172 174 109
-174 110 238 173 175
-175 176 111 239 174
-176 177 112 240 175
-177 176 178 113 241
-178 242 177 179 114
-179 243 178 180 115
-180 244 179 181 116
-181 245 180 182 117
-182 246 181 183 118
-183 247 182 184 119
-184 248 183 185 120
-185 121 249 184 186
-186 187 122 250 185
-187 188 123 251 186
-188 187 189 124 252
-189 253 188 190 125
-190 254 189 191 126
-191 255 190 192 127
-192 256 191 128 129
-193 256 29 194 129
-194 193 30 195 130
-195 194 31 196 131
-196 132 195 32 197
-197 33 198 133 196
-198 34 199 134 197
-199 198 35 200 135
-200 199 36 201 136
-201 200 37 202 137
-202 201 38 203 138
-203 202 39 204 139
-204 203 40 205 140
-205 204 41 206 141
-206 205 42 207 142
-207 143 206 43 208
-208 44 209 144 207
-209 45 210 145 208
-210 209 46 211 146
-211 210 47 212 147
-212 211 48 213 148
-213 212 49 214 149
-214 213 50 215 150
-215 214 51 216 151
-216 215 52 217 152
-217 216 53 218 153
-218 154 217 54 219
-219 55 220 155 218
-220 56 221 156 219
-221 220 57 222 157
-222 221 58 223 158
-223 222 59 224 159
-224 223 60 225 160
-225 224 61 226 161
-226 225 62 227 162
-227 226 63 228 163
-228 227 64 229 164
-229 165 1 228 230
-230 231 166 2 229
-231 232 167 3 230
-232 231 233 168 4
-233 232 234 169 5
-234 233 235 170 6
-235 234 236 171 7
-236 235 237 172 8
-237 236 238 173 9
-238 237 239 174 10
-239 11 238 240 175
-240 176 12 239 241
-241 242 177 13 240
-242 243 178 14 241
-243 242 244 179 15
-244 243 245 180 16
-245 244 246 181 17
-246 245 247 182 18
-247 246 248 183 19
-248 247 249 184 20
-249 248 250 185 21
-250 22 249 251 186
-251 187 23 250 252
-252 253 188 24 251
-253 254 189 25 252
-254 253 255 190 26
-255 254 256 191 27
-256 255 192 28 193
0

**************