[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 6 ] =
{4,4}_<34,30>.
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {2, 3}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246,
247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235},
{232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220,
221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209},
{206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194,
195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183},
{180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {82, 83}, {80, 81},
{78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65},
{62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {4, 5},
{6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22,
23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38,
39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {84, 85}, {86, 87}, {88,
89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103},
{104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116,
117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {130, 131},
{132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144,
145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157},
{158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170,
171}, {1, 2}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233,
234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210},
{205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181,
182}, {177, 178}, {173, 174}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66},
{61, 62}, {57, 58}, {53, 54}, {49, 50}, {5, 6}, {9, 10}, {13, 14}, {17, 18},
{21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {85, 86},
{89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114},
{117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141,
142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166},
{169, 170}, {3, 4}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220},
{211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {75,
76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43,
44}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131,
132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {7, 8}, {247, 248}, {231,
232}, {215, 216}, {199, 200}, {183, 184}, {71, 72}, {55, 56}, {23, 24}, {39,
40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {15,
16}, {239, 240}, {207, 208}, {175, 176}, {79, 80}, {47, 48}, {111, 112}, {143,
144}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {128, 194}, {63, 64}, {191,
192}, {1, 129}, {81, 209}, {80, 208}, {79, 207}, {78, 206}, {77, 205}, {76,
204}, {75, 203}, {74, 202}, {73, 201}, {72, 200}, {71, 199}, {70, 198}, {69,
197}, {68, 196}, {67, 195}, {66, 194}, {65, 193}, {64, 192}, {63, 191}, {62,
190}, {61, 189}, {60, 188}, {59, 187}, {58, 186}, {57, 185}, {56, 184}, {55,
183}, {54, 182}, {53, 181}, {52, 180}, {51, 179}, {50, 178}, {49, 177}, {48,
176}, {2, 130}, {3, 131}, {4, 132}, {5, 133}, {6, 134}, {7, 135}, {8, 136}, {9,
137}, {10, 138}, {11, 139}, {12, 140}, {13, 141}, {14, 142}, {15, 143}, {16,
144}, {17, 145}, {18, 146}, {19, 147}, {20, 148}, {21, 149}, {22, 150}, {23,
151}, {24, 152}, {25, 153}, {26, 154}, {27, 155}, {28, 156}, {29, 157}, {30,
158}, {31, 159}, {32, 160}, {33, 161}, {34, 162}, {35, 163}, {36, 164}, {37,
165}, {38, 166}, {39, 167}, {40, 168}, {41, 169}, {42, 170}, {43, 171}, {44,
172}, {45, 173}, {46, 174}, {47, 175}, {82, 210}, {83, 211}, {84, 212}, {85,
213}, {86, 214}, {87, 215}, {88, 216}, {89, 217}, {90, 218}, {91, 219}, {92,
220}, {93, 221}, {94, 222}, {95, 223}, {96, 224}, {97, 225}, {98, 226}, {99,
227}, {100, 228}, {101, 229}, {102, 230}, {103, 231}, {104, 232}, {105, 233},
{106, 234}, {107, 235}, {108, 236}, {109, 237}, {110, 238}, {111, 239}, {112,
240}, {113, 241}, {114, 242}, {115, 243}, {116, 244}, {117, 245}, {118, 246},
{119, 247}, {120, 248}, {121, 249}, {122, 250}, {123, 251}, {124, 252}, {125,
253}, {126, 254}, {127, 255}, {1, 128}, {63, 129}, {126, 192}, {127, 193}, {1,
195}, {81, 147}, {80, 146}, {77, 143}, {76, 142}, {73, 139}, {72, 138}, {69,
135}, {68, 134}, {65, 131}, {64, 130}, {61, 255}, {60, 254}, {57, 251}, {56,
250}, {53, 247}, {52, 246}, {49, 243}, {48, 242}, {4, 198}, {5, 199}, {8, 202},
{9, 203}, {12, 206}, {13, 207}, {16, 210}, {17, 211}, {20, 214}, {21, 215}, {24,
218}, {25, 219}, {28, 222}, {29, 223}, {32, 226}, {33, 227}, {36, 230}, {37,
231}, {40, 234}, {41, 235}, {44, 238}, {45, 239}, {84, 150}, {85, 151}, {88,
154}, {89, 155}, {92, 158}, {93, 159}, {96, 162}, {97, 163}, {100, 166}, {101,
167}, {104, 170}, {105, 171}, {108, 174}, {109, 175}, {112, 178}, {113, 179},
{116, 182}, {117, 183}, {120, 186}, {121, 187}, {124, 190}, {125, 191}, {2,
196}, {82, 148}, {75, 141}, {74, 140}, {67, 133}, {66, 132}, {59, 253}, {58,
252}, {51, 245}, {50, 244}, {3, 197}, {10, 204}, {11, 205}, {18, 212}, {19,
213}, {26, 220}, {27, 221}, {34, 228}, {35, 229}, {42, 236}, {43, 237}, {83,
149}, {90, 156}, {91, 157}, {98, 164}, {99, 165}, {106, 172}, {107, 173}, {114,
180}, {115, 181}, {122, 188}, {123, 189}, {6, 200}, {71, 137}, {70, 136}, {55,
249}, {54, 248}, {7, 201}, {22, 216}, {23, 217}, {38, 232}, {39, 233}, {86,
152}, {87, 153}, {102, 168}, {103, 169}, {118, 184}, {119, 185}, {14, 208}, {79,
145}, {78, 144}, {15, 209}, {46, 240}, {47, 241}, {110, 176}, {111, 177}, {30,
224}, {31, 225}, {94, 160}, {95, 161}, {127, 128}, {62, 256}, {128, 256}, {129,
256}, {255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 129)(3, 63)(4, 191)(5, 125)(6, 253)(7, 59)(8, 187)(9, 121)(10, 249)(11,
55)(12, 183)(13, 117)(14, 245)(15, 51)(16, 179)(17, 113)(18, 241)(19, 47)(20,
175)(21, 109)(22, 237)(23, 43)(24, 171)(25, 105)(26, 233)(27, 39)(28, 167)(29,
101)(30, 229)(31, 35)(32, 163)(33, 97)(34, 225)(36, 159)(37, 93)(38, 221)(40,
155)(41, 89)(42, 217)(44, 151)(45, 85)(46, 213)(48, 147)(49, 81)(50, 209)(52,
143)(53, 77)(54, 205)(56, 139)(57, 73)(58, 201)(60, 135)(61, 69)(62, 197)(64,
131)(66, 193)(67, 127)(68, 255)(70, 189)(71, 123)(72, 251)(74, 185)(75, 119)(76,
247)(78, 181)(79, 115)(80, 243)(82, 177)(83, 111)(84, 239)(86, 173)(87, 107)(88,
235)(90, 169)(91, 103)(92, 231)(94, 165)(95, 99)(96, 227)(98, 161)(100,
223)(102, 157)(104, 219)(106, 153)(108, 215)(110, 149)(112, 211)(114, 145)(116,
207)(118, 141)(120, 203)(122, 137)(124, 199)(126, 133)(128, 195)(132, 192)(134,
254)(136, 188)(138, 250)(140, 184)(142, 246)(144, 180)(146, 242)(148, 176)(150,
238)(152, 172)(154, 234)(156, 168)(158, 230)(160, 164)(162, 226)(166, 222)(170,
218)(174, 214)(178, 210)(182, 206)(186, 202)(190, 198)(196, 256)(200, 252)(204,
248)(208, 244)(212, 240)(216, 236)(220, 232)(224, 228) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 195)(3, 67)(4, 133)(6, 199)(7, 71)(8, 137)(10, 203)(11, 75)(12, 141)(14,
207)(15, 79)(16, 145)(18, 211)(19, 83)(20, 149)(22, 215)(23, 87)(24, 153)(26,
219)(27, 91)(28, 157)(30, 223)(31, 95)(32, 161)(34, 227)(35, 99)(36, 165)(38,
231)(39, 103)(40, 169)(42, 235)(43, 107)(44, 173)(46, 239)(47, 111)(48, 177)(50,
243)(51, 115)(52, 181)(54, 247)(55, 119)(56, 185)(58, 251)(59, 123)(60, 189)(62,
255)(63, 127)(64, 193)(66, 131)(68, 197)(70, 135)(72, 201)(74, 139)(76, 205)(78,
143)(80, 209)(82, 147)(84, 213)(86, 151)(88, 217)(90, 155)(92, 221)(94, 159)(96,
225)(98, 163)(100, 229)(102, 167)(104, 233)(106, 171)(108, 237)(110, 175)(112,
241)(114, 179)(116, 245)(118, 183)(120, 249)(122, 187)(124, 253)(126, 191)(128,
129)(130, 194)(134, 198)(138, 202)(142, 206)(146, 210)(150, 214)(154, 218)(158,
222)(162, 226)(166, 230)(170, 234)(174, 238)(178, 242)(182, 246)(186, 250)(190,
254)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128)(129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256)
C4[ 256, 6 ]
256
-1 2 128 129 195
-2 1 3 130 196
-3 2 4 131 197
-4 132 198 3 5
-5 133 199 4 6
-6 134 200 5 7
-7 135 201 6 8
-8 136 202 7 9
-9 137 203 8 10
-10 11 138 204 9
-11 12 139 205 10
-12 11 13 140 206
-13 12 14 141 207
-14 13 15 142 208
-15 143 209 14 16
-16 144 210 15 17
-17 145 211 16 18
-18 146 212 17 19
-19 147 213 18 20
-20 148 214 19 21
-21 22 149 215 20
-22 23 150 216 21
-23 22 24 151 217
-24 23 25 152 218
-25 24 26 153 219
-26 154 220 25 27
-27 155 221 26 28
-28 156 222 27 29
-29 157 223 28 30
-30 158 224 29 31
-31 159 225 30 32
-32 33 160 226 31
-33 34 161 227 32
-34 33 35 162 228
-35 34 36 163 229
-36 35 37 164 230
-37 165 231 36 38
-38 166 232 37 39
-39 167 233 38 40
-40 168 234 39 41
-41 169 235 40 42
-42 170 236 41 43
-43 44 171 237 42
-44 45 172 238 43
-45 44 46 173 239
-46 45 47 174 240
-47 46 48 175 241
-48 176 242 47 49
-49 177 243 48 50
-50 178 244 49 51
-51 179 245 50 52
-52 180 246 51 53
-53 181 247 52 54
-54 55 182 248 53
-55 56 183 249 54
-56 55 57 184 250
-57 56 58 185 251
-58 57 59 186 252
-59 187 253 58 60
-60 188 254 59 61
-61 189 255 60 62
-62 190 256 61 63
-63 191 62 129 64
-64 192 63 130 65
-65 66 193 64 131
-66 132 67 194 65
-67 66 133 68 195
-68 67 134 69 196
-69 68 135 70 197
-70 198 69 136 71
-71 199 70 137 72
-72 200 71 138 73
-73 201 72 139 74
-74 202 73 140 75
-75 203 74 141 76
-76 77 204 75 142
-77 143 78 205 76
-78 77 144 79 206
-79 78 145 80 207
-80 79 146 81 208
-81 209 80 147 82
-82 210 81 148 83
-83 211 82 149 84
-84 212 83 150 85
-85 213 84 151 86
-86 214 85 152 87
-87 88 215 86 153
-88 154 89 216 87
-89 88 155 90 217
-90 89 156 91 218
-91 90 157 92 219
-92 220 91 158 93
-93 221 92 159 94
-94 222 93 160 95
-95 223 94 161 96
-96 224 95 162 97
-97 225 96 163 98
-98 99 226 97 164
-99 165 100 227 98
-100 99 166 101 228
-101 100 167 102 229
-102 101 168 103 230
-103 231 102 169 104
-104 232 103 170 105
-105 233 104 171 106
-106 234 105 172 107
-107 235 106 173 108
-108 236 107 174 109
-109 110 237 108 175
-110 176 111 238 109
-111 110 177 112 239
-112 111 178 113 240
-113 112 179 114 241
-114 242 113 180 115
-115 243 114 181 116
-116 244 115 182 117
-117 245 116 183 118
-118 246 117 184 119
-119 247 118 185 120
-120 121 248 119 186
-121 187 122 249 120
-122 121 188 123 250
-123 122 189 124 251
-124 123 190 125 252
-125 253 124 191 126
-126 254 125 192 127
-127 255 126 193 128
-128 1 256 127 194
-129 1 256 63 130
-130 2 129 64 131
-131 132 3 130 65
-132 66 133 4 131
-133 132 67 134 5
-134 133 68 135 6
-135 134 69 136 7
-136 135 70 137 8
-137 136 71 138 9
-138 137 72 139 10
-139 11 138 73 140
-140 12 139 74 141
-141 13 140 75 142
-142 143 14 141 76
-143 77 144 15 142
-144 143 78 145 16
-145 144 79 146 17
-146 145 80 147 18
-147 146 81 148 19
-148 147 82 149 20
-149 148 83 150 21
-150 22 149 84 151
-151 23 150 85 152
-152 24 151 86 153
-153 154 25 152 87
-154 88 155 26 153
-155 154 89 156 27
-156 155 90 157 28
-157 156 91 158 29
-158 157 92 159 30
-159 158 93 160 31
-160 159 94 161 32
-161 33 160 95 162
-162 34 161 96 163
-163 35 162 97 164
-164 165 36 163 98
-165 99 166 37 164
-166 165 100 167 38
-167 166 101 168 39
-168 167 102 169 40
-169 168 103 170 41
-170 169 104 171 42
-171 170 105 172 43
-172 44 171 106 173
-173 45 172 107 174
-174 46 173 108 175
-175 176 47 174 109
-176 110 177 48 175
-177 176 111 178 49
-178 177 112 179 50
-179 178 113 180 51
-180 179 114 181 52
-181 180 115 182 53
-182 181 116 183 54
-183 55 182 117 184
-184 56 183 118 185
-185 57 184 119 186
-186 187 58 185 120
-187 121 188 59 186
-188 187 122 189 60
-189 188 123 190 61
-190 189 124 191 62
-191 190 125 192 63
-192 191 126 193 64
-193 192 127 194 65
-194 66 193 128 195
-195 1 67 194 196
-196 2 68 195 197
-197 198 3 69 196
-198 199 4 70 197
-199 198 200 5 71
-200 199 201 6 72
-201 200 202 7 73
-202 201 203 8 74
-203 202 204 9 75
-204 203 205 10 76
-205 11 77 204 206
-206 12 78 205 207
-207 13 79 206 208
-208 209 14 80 207
-209 210 15 81 208
-210 209 211 16 82
-211 210 212 17 83
-212 211 213 18 84
-213 212 214 19 85
-214 213 215 20 86
-215 214 216 21 87
-216 22 88 215 217
-217 23 89 216 218
-218 24 90 217 219
-219 220 25 91 218
-220 221 26 92 219
-221 220 222 27 93
-222 221 223 28 94
-223 222 224 29 95
-224 223 225 30 96
-225 224 226 31 97
-226 225 227 32 98
-227 33 99 226 228
-228 34 100 227 229
-229 35 101 228 230
-230 231 36 102 229
-231 232 37 103 230
-232 231 233 38 104
-233 232 234 39 105
-234 233 235 40 106
-235 234 236 41 107
-236 235 237 42 108
-237 236 238 43 109
-238 44 110 237 239
-239 45 111 238 240
-240 46 112 239 241
-241 242 47 113 240
-242 243 48 114 241
-243 242 244 49 115
-244 243 245 50 116
-245 244 246 51 117
-246 245 247 52 118
-247 246 248 53 119
-248 247 249 54 120
-249 55 121 248 250
-250 56 122 249 251
-251 57 123 250 252
-252 253 58 124 251
-253 254 59 125 252
-254 253 255 60 126
-255 254 256 61 127
-256 255 62 128 129
0