C4graphConstructions for C4[ 256, 6 ] = {4,4}_<34,30>

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 256, 6 ]. See Glossary for some detail.

{4, 4}_< 34, 30> = MPS( 64, 8; 1) = MPS( 64, 8; 3)

      = PS( 4,128; 31) = PS( 4,128; 33) = MPS( 4,128; 1)

      = MPS( 4,128; 63) = R_128( 66, 1) = R_128( 2, 65)

      = R_128(126, 65) = R_128( 62, 1) = PL(MC3( 4, 32, 1, 17, 17, 14, 1), [4^32, 64^2])

      = PL(MC3( 4, 32, 1, 17, 17, 30, 1), [4^32, 64^2]) = PL(MC3( 8, 16, 1, 9, 9, 6, 1), [4^32, 64^2]) = PL(MC3( 8, 16, 1, 9, 9, 14, 1), [4^32, 64^2])

      = PL(MC3( 16, 8, 1, 5, 5, 2, 1), [4^32, 64^2]) = PL(MC3( 16, 8, 1, 5, 5, 6, 1), [4^32, 64^2]) = PL(MBr( 2, 64; 31))

      = PL(BC_64({ 0, 32 }, { 1, 31 }) = UG(ATD[256, 28]) = UG(ATD[256, 29])

      = UG(ATD[256, 30]) = MG(Rmap(256,242) { 8,128| 2}_128) = DG(Rmap(256,242) { 8,128| 2}_128)

      = MG(Rmap(256,243) { 8,128| 4}_128) = DG(Rmap(256,243) { 8,128| 4}_128) = DG(Rmap(256,244) {128, 8| 2}_128)

      = DG(Rmap(256,245) {128, 8| 4}_128) = BGCG(W( 32, 2); K2;{5, 6}) = AT[256, 37]

     

Cyclic coverings

mod 128:
12
1 1 127 0 66
2 0 62 1 127

mod 128:
12
1 1 127 0 2
2 0 126 63 65