C4graphGraph forms for C4 [ 256, 9 ] = PS(16,32;3)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 9 ] = PS(16,32;3).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {32, 34}, {160, 162}, {64, 67}, {240, 243}, {112, 115}, {192, 195}, {48, 52}, {176, 180}, {128, 134}, {80, 87}, {224, 231}, {96, 103}, {208, 215}, {80, 88}, {208, 216}, {96, 106}, {224, 234}, {48, 59}, {128, 139}, {176, 187}, {112, 124}, {240, 252}, {64, 78}, {192, 206}, {16, 31}, {32, 47}, {144, 159}, {160, 175}, {1, 17}, {131, 147}, {130, 146}, {129, 145}, {2, 18}, {3, 19}, {4, 20}, {5, 21}, {6, 22}, {7, 23}, {8, 24}, {9, 25}, {10, 26}, {11, 27}, {12, 28}, {13, 29}, {14, 30}, {15, 31}, {132, 148}, {133, 149}, {134, 150}, {135, 151}, {136, 152}, {137, 153}, {138, 154}, {139, 155}, {140, 156}, {141, 157}, {142, 158}, {143, 159}, {3, 18}, {131, 146}, {5, 20}, {7, 22}, {9, 24}, {11, 26}, {13, 28}, {15, 30}, {133, 148}, {135, 150}, {137, 152}, {139, 154}, {141, 156}, {143, 158}, {2, 17}, {236, 255}, {232, 251}, {228, 247}, {130, 145}, {108, 127}, {104, 123}, {100, 119}, {6, 21}, {10, 25}, {14, 29}, {134, 149}, {138, 153}, {142, 157}, {33, 53}, {239, 251}, {238, 250}, {237, 249}, {236, 248}, {231, 243}, {230, 242}, {229, 241}, {111, 123}, {110, 122}, {109, 121}, {108, 120}, {103, 115}, {102, 114}, {101, 113}, {34, 54}, {35, 55}, {40, 60}, {41, 61}, {42, 62}, {43, 63}, {161, 181}, {162, 182}, {163, 183}, {168, 188}, {169, 189}, {170, 190}, {171, 191}, {39, 50}, {235, 254}, {233, 252}, {227, 246}, {225, 244}, {107, 126}, {105, 124}, {99, 118}, {97, 116}, {45, 56}, {47, 58}, {167, 178}, {173, 184}, {175, 186}, {4, 19}, {234, 253}, {226, 245}, {132, 147}, {106, 125}, {98, 117}, {12, 27}, {38, 49}, {46, 57}, {72, 95}, {140, 155}, {166, 177}, {174, 185}, {200, 223}, {65, 89}, {79, 87}, {78, 86}, {77, 85}, {66, 90}, {67, 91}, {68, 92}, {69, 93}, {70, 94}, {71, 95}, {73, 81}, {74, 82}, {75, 83}, {76, 84}, {193, 217}, {194, 218}, {195, 219}, {196, 220}, {197, 221}, {198, 222}, {199, 223}, {201, 209}, {202, 210}, {203, 211}, {204, 212}, {205, 213}, {206, 214}, {207, 215}, {65, 88}, {79, 86}, {77, 84}, {67, 90}, {69, 92}, {71, 94}, {75, 82}, {193, 216}, {195, 218}, {197, 220}, {199, 222}, {203, 210}, {205, 212}, {207, 214}, {36, 63}, {78, 85}, {40, 51}, {44, 55}, {66, 89}, {70, 93}, {74, 81}, {164, 191}, {168, 179}, {172, 183}, {194, 217}, {198, 221}, {202, 209}, {206, 213}, {36, 56}, {235, 247}, {234, 246}, {233, 245}, {232, 244}, {227, 255}, {226, 254}, {225, 253}, {107, 119}, {106, 118}, {105, 117}, {104, 116}, {99, 127}, {98, 126}, {97, 125}, {37, 57}, {38, 58}, {39, 59}, {45, 49}, {46, 50}, {47, 51}, {164, 184}, {165, 185}, {166, 186}, {167, 187}, {173, 177}, {174, 178}, {175, 179}, {33, 60}, {239, 242}, {231, 250}, {229, 248}, {111, 114}, {103, 122}, {101, 120}, {35, 62}, {41, 52}, {43, 54}, {161, 188}, {163, 190}, {169, 180}, {171, 182}, {8, 23}, {238, 241}, {230, 249}, {110, 113}, {102, 121}, {34, 61}, {42, 53}, {68, 91}, {76, 83}, {136, 151}, {162, 189}, {170, 181}, {196, 219}, {204, 211}, {1, 32}, {129, 160}, {17, 48}, {145, 176}, {86, 112}, {214, 240}, {72, 96}, {200, 224}, {73, 96}, {89, 112}, {201, 224}, {217, 240}, {30, 48}, {158, 176}, {16, 32}, {144, 160}, {19, 34}, {21, 36}, {23, 38}, {25, 40}, {27, 42}, {29, 44}, {31, 46}, {147, 162}, {149, 164}, {151, 166}, {153, 168}, {155, 170}, {157, 172}, {159, 174}, {17, 35}, {20, 38}, {21, 39}, {24, 42}, {25, 43}, {28, 46}, {29, 47}, {145, 163}, {148, 166}, {149, 167}, {152, 170}, {153, 171}, {156, 174}, {157, 175}, {18, 33}, {22, 37}, {26, 41}, {30, 45}, {146, 161}, {150, 165}, {154, 169}, {158, 173}, {18, 36}, {223, 233}, {222, 232}, {95, 105}, {94, 104}, {87, 97}, {19, 37}, {26, 44}, {27, 45}, {146, 164}, {147, 165}, {154, 172}, {155, 173}, {215, 225}, {20, 35}, {88, 111}, {28, 43}, {148, 163}, {156, 171}, {216, 239}, {81, 104}, {223, 230}, {221, 228}, {95, 102}, {93, 100}, {91, 98}, {87, 110}, {85, 108}, {83, 106}, {209, 232}, {211, 234}, {213, 236}, {215, 238}, {219, 226}, {81, 107}, {221, 231}, {93, 103}, {92, 102}, {89, 99}, {88, 98}, {85, 111}, {84, 110}, {209, 235}, {212, 238}, {213, 239}, {216, 226}, {217, 227}, {220, 230}, {82, 105}, {222, 229}, {94, 101}, {90, 97}, {86, 109}, {210, 233}, {214, 237}, {218, 225}, {22, 40}, {91, 101}, {90, 100}, {83, 109}, {82, 108}, {23, 41}, {31, 33}, {150, 168}, {151, 169}, {159, 161}, {210, 236}, {211, 237}, {218, 228}, {219, 229}, {24, 39}, {92, 99}, {84, 107}, {152, 167}, {212, 235}, {220, 227}, {50, 80}, {178, 208}, {37, 64}, {165, 192}, {44, 64}, {172, 192}, {61, 80}, {189, 208}, {51, 65}, {54, 68}, {55, 69}, {58, 72}, {59, 73}, {62, 76}, {63, 77}, {179, 193}, {182, 196}, {183, 197}, {186, 200}, {187, 201}, {190, 204}, {191, 205}, {52, 71}, {56, 75}, {60, 79}, {180, 199}, {184, 203}, {188, 207}, {49, 68}, {51, 70}, {57, 76}, {59, 78}, {177, 196}, {179, 198}, {185, 204}, {187, 206}, {52, 66}, {53, 67}, {60, 74}, {61, 75}, {180, 194}, {181, 195}, {188, 202}, {189, 203}, {50, 69}, {58, 77}, {178, 197}, {186, 205}, {53, 72}, {55, 74}, {63, 66}, {181, 200}, {183, 202}, {191, 194}, {49, 79}, {56, 70}, {57, 71}, {177, 207}, {184, 198}, {185, 199}, {54, 73}, {62, 65}, {182, 201}, {190, 193}, {100, 128}, {16, 245}, {117, 144}, {16, 250}, {122, 144}, {109, 128}, {2, 247}, {127, 138}, {125, 136}, {119, 130}, {8, 253}, {10, 255}, {7, 241}, {121, 143}, {120, 142}, {113, 135}, {14, 248}, {15, 249}, {1, 246}, {126, 137}, {118, 129}, {9, 254}, {1, 251}, {127, 133}, {126, 132}, {123, 129}, {119, 141}, {118, 140}, {115, 137}, {114, 136}, {4, 254}, {5, 255}, {8, 242}, {9, 243}, {12, 246}, {13, 247}, {3, 248}, {124, 135}, {120, 131}, {116, 143}, {7, 252}, {15, 244}, {4, 249}, {123, 134}, {121, 132}, {115, 142}, {113, 140}, {6, 251}, {12, 241}, {14, 243}, {2, 252}, {125, 131}, {124, 130}, {117, 139}, {116, 138}, {3, 253}, {10, 244}, {11, 245}, {5, 250}, {122, 133}, {114, 141}, {13, 242}, {6, 256}, {11, 256}, {228, 256}, {237, 256} }>;

(II) A more general form is to represent the graph as the orbit of {32, 34} under the group generated by the following permutations:

a: (2, 16)(3, 15)(4, 14)(5, 13)(6, 12)(7, 11)(8, 10)(17, 32)(18, 31)(19, 30)(20, 29)(21, 28)(22, 27)(23, 26)(24, 25)(34, 48)(35, 47)(36, 46)(37, 45)(38, 44)(39, 43)(40, 42)(49, 64)(50, 63)(51, 62)(52, 61)(53, 60)(54, 59)(55, 58)(56, 57)(66, 80)(67, 79)(68, 78)(69, 77)(70, 76)(71, 75)(72, 74)(81, 96)(82, 95)(83, 94)(84, 93)(85, 92)(86, 91)(87, 90)(88, 89)(98, 112)(99, 111)(100, 110)(101, 109)(102, 108)(103, 107)(104, 106)(113, 128)(114, 127)(115, 126)(116, 125)(117, 124)(118, 123)(119, 122)(120, 121)(130, 144)(131, 143)(132, 142)(133, 141)(134, 140)(135, 139)(136, 138)(145, 160)(146, 159)(147, 158)(148, 157)(149, 156)(150, 155)(151, 154)(152, 153)(162, 176)(163, 175)(164, 174)(165, 173)(166, 172)(167, 171)(168, 170)(177, 192)(178, 191)(179, 190)(180, 189)(181, 188)(182, 187)(183, 186)(184, 185)(194, 208)(195, 207)(196, 206)(197, 205)(198, 204)(199, 203)(200, 202)(209, 224)(210, 223)(211, 222)(212, 221)(213, 220)(214, 219)(215, 218)(216, 217)(226, 240)(227, 239)(228, 238)(229, 237)(230, 236)(231, 235)(232, 234)(241, 256)(242, 255)(243, 254)(244, 253)(245, 252)(246, 251)(247, 250)(248, 249)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)(17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32)(33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48)(49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64)(65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80)(81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96)(97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112)(113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128)(129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144)(145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160)(161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176)(177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192)(193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208)(209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224)(225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240)(241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256)
c: (1, 17, 35, 55, 69, 93, 103, 115, 137, 153, 171, 191, 205, 213, 239, 251)(2, 20, 44, 50, 70, 96, 112, 126, 138, 156, 164, 186, 206, 216, 232, 246)(3, 23, 37, 61, 71, 83, 105, 121, 139, 159, 173, 181, 207, 219, 225, 241)(4, 26, 46, 56, 72, 86, 98, 116, 140, 146, 166, 192, 208, 222, 234, 252)(5, 29, 39, 51, 73, 89, 107, 127, 141, 149, 175, 187, 193, 209, 227, 247)(6, 32, 48, 62, 74, 92, 100, 122, 142, 152, 168, 182, 194, 212, 236, 242)(7, 19, 41, 57, 75, 95, 109, 117, 143, 155, 161, 177, 195, 215, 229, 253)(8, 22, 34, 52, 76, 82, 102, 128, 144, 158, 170, 188, 196, 218, 238, 248)(9, 25, 43, 63, 77, 85, 111, 123, 129, 145, 163, 183, 197, 221, 231, 243)(10, 28, 36, 58, 78, 88, 104, 118, 130, 148, 172, 178, 198, 224, 240, 254)(11, 31, 45, 53, 79, 91, 97, 113, 131, 151, 165, 189, 199, 211, 233, 249)(12, 18, 38, 64, 80, 94, 106, 124, 132, 154, 174, 184, 200, 214, 226, 244)(13, 21, 47, 59, 65, 81, 99, 119, 133, 157, 167, 179, 201, 217, 235, 255)(14, 24, 40, 54, 66, 84, 108, 114, 134, 160, 176, 190, 202, 220, 228, 250)(15, 27, 33, 49, 67, 87, 101, 125, 135, 147, 169, 185, 203, 223, 237, 245)(16, 30, 42, 60, 68, 90, 110, 120, 136, 150, 162, 180, 204, 210, 230, 256)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 9 ]
256
-1 246 17 251 32
-2 247 17 18 252
-3 253 248 18 19
-4 254 249 19 20
-5 255 250 20 21
-6 22 256 251 21
-7 22 23 241 252
-8 242 253 23 24
-9 243 254 24 25
-10 244 255 25 26
-11 245 256 26 27
-12 246 27 28 241
-13 242 247 28 29
-14 243 248 29 30
-15 244 249 30 31
-16 245 250 31 32
-17 1 2 35 48
-18 33 2 3 36
-19 34 3 4 37
-20 35 4 5 38
-21 36 5 6 39
-22 37 6 7 40
-23 38 7 8 41
-24 39 8 9 42
-25 40 9 10 43
-26 11 44 41 10
-27 11 12 45 42
-28 12 13 46 43
-29 44 13 14 47
-30 45 14 15 48
-31 33 46 15 16
-32 1 34 47 16
-33 60 18 31 53
-34 61 19 32 54
-35 55 17 62 20
-36 56 18 63 21
-37 22 57 19 64
-38 23 58 49 20
-39 24 59 50 21
-40 22 25 60 51
-41 23 26 61 52
-42 24 27 62 53
-43 25 28 63 54
-44 55 26 29 64
-45 56 27 49 30
-46 57 28 50 31
-47 58 29 51 32
-48 59 17 30 52
-49 45 68 79 38
-50 46 69 80 39
-51 47 70 40 65
-52 66 48 71 41
-53 33 67 72 42
-54 34 68 73 43
-55 44 35 69 74
-56 45 36 70 75
-57 46 37 71 76
-58 77 47 38 72
-59 78 48 39 73
-60 33 79 40 74
-61 34 80 41 75
-62 35 42 65 76
-63 66 77 36 43
-64 44 67 78 37
-65 88 89 51 62
-66 89 90 52 63
-67 90 91 53 64
-68 91 92 49 54
-69 55 92 93 50
-70 56 93 94 51
-71 57 94 95 52
-72 58 95 96 53
-73 59 81 96 54
-74 55 81 60 82
-75 56 82 61 83
-76 57 83 62 84
-77 58 84 63 85
-78 59 85 64 86
-79 49 60 86 87
-80 88 50 61 87
-81 104 73 74 107
-82 105 74 75 108
-83 106 75 76 109
-84 77 110 107 76
-85 77 78 111 108
-86 78 79 112 109
-87 110 79 80 97
-88 111 80 65 98
-89 66 99 112 65
-90 66 67 100 97
-91 67 68 101 98
-92 99 68 69 102
-93 100 69 70 103
-94 101 70 71 104
-95 102 71 72 105
-96 103 72 73 106
-97 90 125 116 87
-98 88 91 126 117
-99 89 92 127 118
-100 90 93 128 119
-101 91 113 94 120
-102 121 92 114 95
-103 122 93 115 96
-104 123 81 94 116
-105 124 82 95 117
-106 125 83 96 118
-107 81 126 84 119
-108 82 127 85 120
-109 121 83 128 86
-110 122 113 84 87
-111 88 123 114 85
-112 89 124 115 86
-113 110 101 135 140
-114 111 102 136 141
-115 112 103 137 142
-116 143 104 138 97
-117 144 105 139 98
-118 99 106 129 140
-119 100 107 130 141
-120 101 108 131 142
-121 132 143 102 109
-122 110 133 144 103
-123 111 134 104 129
-124 112 135 105 130
-125 136 106 97 131
-126 132 137 107 98
-127 99 133 138 108
-128 100 134 139 109
-129 123 145 160 118
-130 145 124 146 119
-131 146 125 147 120
-132 121 147 126 148
-133 122 148 127 149
-134 123 149 128 150
-135 113 124 150 151
-136 114 125 151 152
-137 115 126 152 153
-138 154 116 127 153
-139 154 155 117 128
-140 155 156 113 118
-141 156 157 114 119
-142 157 158 115 120
-143 121 158 159 116
-144 122 159 160 117
-145 176 129 130 163
-146 161 130 131 164
-147 132 165 162 131
-148 132 133 166 163
-149 133 134 167 164
-150 165 134 135 168
-151 166 135 136 169
-152 167 136 137 170
-153 168 137 138 171
-154 169 138 139 172
-155 170 139 140 173
-156 171 140 141 174
-157 172 141 142 175
-158 143 176 173 142
-159 143 144 161 174
-160 144 129 162 175
-161 188 146 159 181
-162 189 147 160 182
-163 145 190 148 183
-164 146 191 149 184
-165 147 192 150 185
-166 177 148 151 186
-167 187 178 149 152
-168 188 179 150 153
-169 154 189 180 151
-170 155 190 181 152
-171 156 191 182 153
-172 154 157 192 183
-173 155 177 158 184
-174 156 178 159 185
-175 157 179 160 186
-176 187 145 158 180
-177 166 173 196 207
-178 167 174 197 208
-179 198 168 193 175
-180 176 199 169 194
-181 200 170 161 195
-182 201 171 162 196
-183 202 172 163 197
-184 198 203 173 164
-185 165 199 204 174
-186 166 200 205 175
-187 176 167 201 206
-188 168 202 161 207
-189 169 203 162 208
-190 170 193 204 163
-191 171 194 205 164
-192 165 172 195 206
-193 179 190 216 217
-194 180 191 217 218
-195 181 192 218 219
-196 220 177 182 219
-197 220 221 178 183
-198 221 222 179 184
-199 222 223 180 185
-200 223 224 181 186
-201 187 209 224 182
-202 209 188 210 183
-203 210 189 211 184
-204 211 190 212 185
-205 212 191 213 186
-206 187 213 192 214
-207 177 188 214 215
-208 178 189 215 216
-209 232 201 202 235
-210 233 202 203 236
-211 234 203 204 237
-212 235 204 205 238
-213 236 205 206 239
-214 237 206 207 240
-215 225 238 207 208
-216 193 226 239 208
-217 193 194 227 240
-218 225 194 195 228
-219 226 195 196 229
-220 227 196 197 230
-221 198 231 228 197
-222 198 199 232 229
-223 199 200 233 230
-224 231 200 201 234
-225 253 244 215 218
-226 254 245 216 219
-227 220 255 246 217
-228 221 256 247 218
-229 222 248 219 241
-230 220 242 223 249
-231 221 243 224 250
-232 209 222 244 251
-233 210 223 245 252
-234 253 211 224 246
-235 209 254 212 247
-236 210 255 213 248
-237 211 256 214 249
-238 212 215 250 241
-239 242 213 216 251
-240 243 214 217 252
-241 12 7 238 229
-242 13 8 239 230
-243 231 14 9 240
-244 232 15 225 10
-245 11 233 16 226
-246 1 12 234 227
-247 2 13 235 228
-248 3 14 236 229
-249 4 15 237 230
-250 231 5 16 238
-251 1 232 6 239
-252 2 233 7 240
-253 3 234 225 8
-254 4 235 226 9
-255 5 236 227 10
-256 11 6 237 228
0

**************