C4graphConstructions for C4[ 256, 10 ] = PS(16,32;7)

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 256, 10 ]. See Glossary for some detail.

PS( 16, 32; 7) = PS( 16, 32; 9) = MSY( 8, 32, 17, 8)

      = MSZ ( 16, 16, 7, 7) = MC3( 8, 32, 1, 7, 17, 24, 1) = UG(ATD[256, 58])

      = UG(ATD[256, 59]) = UG(ATD[256, 60]) = MG(Rmap(256,317) { 16, 32| 4}_ 32)

      = DG(Rmap(256,317) { 16, 32| 4}_ 32) = MG(Rmap(256,321) { 16, 32| 8}_ 32) = DG(Rmap(256,321) { 16, 32| 8}_ 32)

      = DG(Rmap(256,331) { 32, 16| 4}_ 32) = DG(Rmap(256,339) { 32, 16| 8}_ 32) = AT[256, 51]

     

Cyclic coverings

mod 32:
12345678
1 1 31 0 - - - - - 0
2 0 15 17 31 - - - - -
3 - 1 1 31 15 - - - -
4 - - 17 15 17 31 - - -
5 - - - 1 1 31 15 - -
6 - - - - 17 15 17 31 -
7 - - - - - 1 1 31 13
8 0 - - - - - 19 15 17

mod 32:
12345678
1 - 0 0 - - - 0 0
2 0 - 1 1 - - - 17
3 0 31 - 17 17 - - -
4 - 31 15 - 1 1 - -
5 - - 15 31 - 17 3 -
6 - - - 31 15 - 19 3
7 0 - - - 29 13 - 1
8 0 15 - - - 29 31 -

mod 32:
12345678
1 - - 0 0 - 0 0 -
2 - - - 0 0 - 16 0
3 0 - - - 1 3 - 17
4 0 0 - - - 19 3 -
5 - 0 31 - - - 19 19
6 0 - 29 13 - - - 1
7 0 16 - 29 13 - - -
8 - 0 15 - 13 31 - -

mod 32:
12345678
1 - - - 0 0 26 0 - -
2 - - - - 0 16 22 0 -
3 - - - - - 22 16 22 0
4 0 - - - - - 1 1 27
5 0 6 0 - - - - - 17
6 0 10 16 10 - - - - -
7 - 0 10 16 31 - - - -
8 - - 0 5 31 15 - - -

mod 32:
12345678
1 1 31 0 14 - - - - - -
2 0 18 - 23 25 - - - - -
3 - 7 9 - 4 18 - - - -
4 - - 14 28 - 22 24 - - -
5 - - - 8 10 - 0 14 - -
6 - - - - 0 18 - 22 24 -
7 - - - - - 8 10 - 4 18
8 - - - - - - 14 28 1 31