C4graphConstructions for C4[ 256, 20 ] = PL(MSY(4,32,15,0))

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 256, 20 ]. See Glossary for some detail.

PL(MSY( 4, 32, 15, 0)) = PL(MSY( 4, 32, 17, 0)) = PL(MC3( 4, 32, 1, 31, 15, 0, 1), [4^32, 32^4])

      = PL(MC3( 4, 32, 1, 31, 17, 0, 1), [4^32, 32^4]) = PL(KE_ 32( 1, 17, 2, 17, 1), [4^32, 32^4]) = PL(Curtain_ 32( 1, 15, 17, 31, 32), [4^32, 32^4])

      = PL(Br( 4, 32; 15)) = PL(ATD[ 32, 10]#DCyc[ 4]) = PL(CS(W( 16, 2)[ 32^ 2], 0))

      = PL(CSI(W( 16, 2)[ 32^ 2], 4)) = BGCG(W( 16, 2), C_ 4, {2', 3'})

Cyclic coverings

mod 32:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - - 0 1 17 18 -
4 - - - - 0 1 - - 17 18
5 0 0 - 0 31 - - - -
6 0 0 0 31 - - - - -
7 0 30 14 15 - - - - -
8 0 30 - 14 15 - - - -

mod 32:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - 1 0 17 18
4 - - - - 31 0 17 16
5 0 0 31 1 - - - -
6 0 0 0 0 - - - -
7 0 30 15 15 - - - -
8 0 30 14 16 - - - -

mod 32:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - - 0 15 0 15 -
3 - - - - - - 0 1 0 1
4 - - - - 0 15 - - 0 15
5 0 31 - - 0 17 - - - -
6 0 31 0 17 - - - - - -
7 - 0 17 0 31 - - - - -
8 - - 0 31 0 17 - - - -

mod 32:
12345678
1 - - - - 0 0 1 0 -
2 - - - - 0 0 15 14 -
3 - - - - 1 - 31 0 1
4 - - - - 15 - 31 0 15
5 0 0 31 17 - - - -
6 0 31 0 17 - - - - - -
7 0 18 1 1 - - - -
8 - - 0 31 0 17 - - - -

mod 32:
12345678
1 - - - - 0 1 0 - 0
2 - - - - 0 0 15 0 -
3 - - - - - 15 0 31 13
4 - - - - 29 - 31 13 28
5 0 31 0 - 3 - - - -
6 0 0 17 17 - - - - -
7 - 0 0 1 1 - - - -
8 0 - 19 4 19 - - - -