C4graphConstructions for C4[ 256, 21 ] = PL(MSY(4,32,15,16))

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 256, 21 ]. See Glossary for some detail.

PL(MSY( 4, 32, 15, 16)) = PL(MSY( 4, 32, 17, 16)) = PL(MSY( 16, 8, 3, 4))

      = PL(MSY( 16, 8, 5, 4)) = PL(MC3( 4, 32, 1, 15, 17, 16, 1), [8^16, 32^4]) = PL(MC3( 16, 8, 1, 3, 5, 4, 1), [8^16, 32^4])

      = PL(KE_ 32( 1, 17, 2, 1, 15), [8^16, 32^4]) = PL(Curtain_ 32( 1, 15, 16, 17, 31), [8^16, 32^4]) = PL(MBr( 16, 8; 3))

      = PL(MBr( 4, 32; 15))

Cyclic coverings

mod 32:
12345678
1 - - - - 0 1 0 - 0
2 - - - - 0 15 0 - 14
3 - - - - - 0 0 15 30
4 - - - - - 0 0 1 16
5 0 31 0 17 - - - - - -
6 0 0 0 0 - - - -
7 - - 0 17 0 31 - - - -
8 0 18 2 16 - - - -

mod 32:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - 15 0 0 0
3 - - - - 17 0 0 2
4 - - - - - - 0 17 1 18
5 0 31 17 15 - - - - -
6 0 31 0 0 - - - - -
7 - 0 0 0 15 - - - -
8 - 0 30 14 31 - - - -

mod 32:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 18 18
3 - - - - 1 0 17 2
4 - - - - 15 0 17 16
5 0 0 31 17 - - - -
6 0 0 0 0 - - - -
7 0 14 15 15 - - - -
8 0 14 30 16 - - - -

mod 32:
12345678
1 - - - - 0 0 1 0 -
2 - - - - 0 15 0 - 0
3 - - - - 15 - 29 0 31
4 - - - - - 13 12 29 31
5 0 0 17 17 - - - - -
6 0 31 0 - 19 - - - -
7 0 - 3 3 20 - - - -
8 - 0 0 1 1 - - - -

mod 32:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - - 0 15 0 15 -
3 - - - - - - 0 1 0 31
4 - - - - 0 15 - - 15 30
5 0 31 - - 0 17 - - - -
6 0 31 0 17 - - - - - -
7 - 0 17 0 31 - - - - -
8 - - 0 1 2 17 - - - -