C4graphGraph forms for C4 [ 256, 25 ] = MSY(8,32,9,8)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 25 ] = MSY(8,32,9,8).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {2, 3}, {254, 255}, {252, 253}, {250, 251}, {246, 247}, {244, 245}, {242, 243}, {238, 239}, {236, 237}, {234, 235}, {230, 231}, {228, 229}, {226, 227}, {222, 223}, {220, 221}, {218, 219}, {214, 215}, {212, 213}, {210, 211}, {206, 207}, {204, 205}, {202, 203}, {198, 199}, {196, 197}, {194, 195}, {94, 95}, {92, 93}, {90, 91}, {86, 87}, {84, 85}, {82, 83}, {78, 79}, {76, 77}, {74, 75}, {70, 71}, {68, 69}, {66, 67}, {62, 63}, {60, 61}, {58, 59}, {54, 55}, {4, 5}, {6, 7}, {10, 11}, {12, 13}, {14, 15}, {18, 19}, {20, 21}, {22, 23}, {26, 27}, {28, 29}, {30, 31}, {34, 35}, {36, 37}, {38, 39}, {42, 43}, {44, 45}, {46, 47}, {50, 51}, {52, 53}, {98, 99}, {100, 101}, {102, 103}, {106, 107}, {108, 109}, {110, 111}, {114, 115}, {116, 117}, {118, 119}, {122, 123}, {124, 125}, {126, 127}, {130, 131}, {132, 133}, {134, 135}, {138, 139}, {140, 141}, {142, 143}, {146, 147}, {148, 149}, {150, 151}, {154, 155}, {156, 157}, {158, 159}, {162, 163}, {164, 165}, {166, 167}, {170, 171}, {172, 173}, {174, 175}, {178, 179}, {180, 181}, {182, 183}, {186, 187}, {188, 189}, {190, 191}, {1, 2}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {3, 4}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {4, 12}, {244, 252}, {240, 248}, {228, 236}, {224, 232}, {212, 220}, {208, 216}, {196, 204}, {192, 200}, {96, 104}, {84, 92}, {80, 88}, {68, 76}, {64, 72}, {16, 24}, {20, 28}, {32, 40}, {36, 44}, {48, 56}, {52, 60}, {100, 108}, {112, 120}, {116, 124}, {128, 136}, {132, 140}, {144, 152}, {148, 156}, {160, 168}, {164, 172}, {176, 184}, {180, 188}, {7, 8}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {8, 16}, {236, 244}, {232, 240}, {204, 212}, {200, 208}, {76, 84}, {72, 80}, {12, 20}, {40, 48}, {44, 52}, {104, 112}, {108, 116}, {136, 144}, {140, 148}, {168, 176}, {172, 180}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {3, 59}, {220, 228}, {216, 224}, {199, 255}, {195, 251}, {92, 100}, {88, 96}, {71, 127}, {67, 123}, {7, 63}, {24, 32}, {28, 36}, {131, 187}, {135, 191}, {152, 160}, {156, 164}, {64, 121}, {192, 249}, {128, 185}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {1, 73}, {191, 247}, {63, 119}, {59, 115}, {5, 77}, {11, 67}, {15, 71}, {17, 89}, {21, 93}, {27, 83}, {31, 87}, {33, 105}, {37, 109}, {43, 99}, {47, 103}, {49, 121}, {53, 125}, {129, 201}, {133, 205}, {139, 195}, {143, 199}, {145, 217}, {149, 221}, {155, 211}, {159, 215}, {161, 233}, {165, 237}, {171, 227}, {175, 231}, {177, 249}, {181, 253}, {187, 243}, {8, 65}, {56, 113}, {24, 81}, {40, 97}, {136, 193}, {152, 209}, {168, 225}, {184, 241}, {9, 81}, {55, 111}, {13, 85}, {19, 75}, {23, 79}, {41, 113}, {45, 117}, {51, 107}, {137, 209}, {141, 213}, {147, 203}, {151, 207}, {169, 241}, {173, 245}, {179, 235}, {183, 239}, {16, 73}, {48, 105}, {144, 201}, {176, 233}, {2, 122}, {60, 68}, {56, 64}, {6, 126}, {25, 97}, {29, 101}, {35, 91}, {39, 95}, {130, 250}, {134, 254}, {153, 225}, {157, 229}, {163, 219}, {167, 223}, {184, 192}, {188, 196}, {32, 89}, {160, 217}, {63, 64}, {191, 192}, {2, 138}, {94, 214}, {90, 210}, {86, 222}, {82, 218}, {78, 198}, {74, 194}, {70, 206}, {66, 202}, {62, 182}, {58, 178}, {54, 190}, {6, 142}, {10, 130}, {14, 134}, {18, 154}, {22, 158}, {26, 146}, {30, 150}, {34, 170}, {38, 174}, {42, 162}, {46, 166}, {50, 186}, {98, 234}, {102, 238}, {106, 226}, {110, 230}, {114, 250}, {118, 254}, {122, 242}, {126, 246}, {10, 146}, {86, 206}, {82, 202}, {78, 214}, {74, 210}, {54, 174}, {14, 150}, {18, 138}, {22, 142}, {42, 178}, {46, 182}, {50, 170}, {106, 242}, {110, 246}, {114, 234}, {118, 238}, {1, 185}, {94, 230}, {90, 226}, {69, 253}, {65, 249}, {61, 133}, {57, 129}, {5, 189}, {26, 162}, {30, 166}, {34, 154}, {38, 158}, {98, 218}, {102, 222}, {121, 193}, {125, 197}, {3, 203}, {95, 151}, {91, 147}, {85, 157}, {81, 153}, {79, 135}, {75, 131}, {69, 141}, {65, 137}, {61, 245}, {57, 241}, {55, 255}, {7, 207}, {9, 193}, {13, 197}, {19, 219}, {23, 223}, {25, 209}, {29, 213}, {35, 235}, {39, 239}, {41, 225}, {45, 229}, {51, 251}, {97, 169}, {101, 173}, {107, 163}, {111, 167}, {113, 185}, {117, 189}, {123, 179}, {127, 183}, {1, 200}, {88, 145}, {72, 129}, {17, 216}, {33, 232}, {49, 248}, {104, 161}, {120, 177}, {11, 211}, {87, 143}, {83, 139}, {77, 149}, {73, 145}, {15, 215}, {17, 201}, {21, 205}, {43, 243}, {47, 247}, {49, 233}, {53, 237}, {105, 177}, {109, 181}, {115, 171}, {119, 175}, {9, 208}, {80, 137}, {41, 240}, {112, 169}, {4, 252}, {93, 165}, {89, 161}, {70, 190}, {66, 186}, {62, 198}, {58, 194}, {27, 227}, {31, 231}, {33, 217}, {37, 221}, {99, 155}, {103, 159}, {120, 128}, {124, 132}, {25, 224}, {96, 153}, {127, 128}, {8, 256}, {57, 256}, {248, 256}, {255, 256} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 185)(3, 113)(4, 41)(5, 225)(6, 153)(7, 81)(8, 9)(10, 256)(11, 248)(12, 240)(13, 232)(14, 224)(15, 216)(16, 208)(17, 71)(18, 127)(19, 183)(20, 239)(21, 39)(22, 95)(23, 151)(24, 207)(25, 134)(26, 254)(27, 118)(28, 238)(29, 102)(30, 222)(31, 86)(32, 206)(33, 197)(34, 125)(35, 53)(36, 237)(37, 165)(38, 93)(40, 205)(42, 252)(43, 244)(44, 236)(45, 228)(46, 220)(47, 212)(48, 204)(49, 67)(50, 123)(51, 179)(52, 235)(54, 91)(55, 147)(56, 203)(57, 130)(58, 250)(59, 114)(60, 234)(61, 98)(62, 218)(63, 82)(64, 202)(65, 193)(66, 121)(68, 233)(69, 161)(70, 89)(72, 201)(73, 200)(74, 192)(75, 184)(76, 176)(77, 168)(78, 160)(79, 152)(80, 144)(83, 119)(84, 175)(85, 231)(88, 143)(90, 190)(92, 174)(94, 158)(96, 142)(97, 133)(99, 245)(100, 173)(103, 213)(104, 141)(105, 196)(106, 188)(107, 180)(108, 172)(109, 164)(110, 156)(111, 148)(112, 140)(116, 171)(117, 227)(120, 139)(122, 186)(124, 170)(126, 154)(128, 138)(131, 241)(132, 169)(135, 209)(136, 137)(145, 199)(146, 255)(149, 167)(150, 223)(155, 246)(157, 230)(159, 214)(162, 253)(163, 181)(166, 221)(177, 195)(178, 251)(182, 219)(187, 242)(189, 226)(191, 210)(194, 249)(198, 217)(211, 247)
b: (1, 2, 3, 4, 5, 6, 7, 8, 65, 66, 67, 68, 69, 70, 71, 72, 129, 130, 131, 132, 133, 134, 135, 136, 193, 194, 195, 196, 197, 198, 199, 200)(9, 74, 139, 204, 13, 78, 143, 208, 73, 138, 203, 12, 77, 142, 207, 16, 137, 202, 11, 76, 141, 206, 15, 80, 201, 10, 75, 140, 205, 14, 79, 144)(17, 146, 19, 148, 21, 150, 23, 152, 81, 210, 83, 212, 85, 214, 87, 216, 145, 18, 147, 20, 149, 22, 151, 24, 209, 82, 211, 84, 213, 86, 215, 88)(25, 218, 155, 92, 29, 222, 159, 96, 89, 26, 219, 156, 93, 30, 223, 160, 153, 90, 27, 220, 157, 94, 31, 224, 217, 154, 91, 28, 221, 158, 95, 32)(33, 34, 35, 36, 37, 38, 39, 40, 97, 98, 99, 100, 101, 102, 103, 104, 161, 162, 163, 164, 165, 166, 167, 168, 225, 226, 227, 228, 229, 230, 231, 232)(41, 106, 171, 236, 45, 110, 175, 240, 105, 170, 235, 44, 109, 174, 239, 48, 169, 234, 43, 108, 173, 238, 47, 112, 233, 42, 107, 172, 237, 46, 111, 176)(49, 178, 51, 180, 53, 182, 55, 184, 113, 242, 115, 244, 117, 246, 119, 248, 177, 50, 179, 52, 181, 54, 183, 56, 241, 114, 243, 116, 245, 118, 247, 120)(57, 250, 187, 124, 61, 254, 191, 128, 121, 58, 251, 188, 125, 62, 255, 192, 185, 122, 59, 252, 189, 126, 63, 256, 249, 186, 123, 60, 253, 190, 127, 64)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 25 ]
256
-1 2 200 73 185
-2 1 122 3 138
-3 2 4 59 203
-4 12 3 5 252
-5 77 189 4 6
-6 5 126 7 142
-7 6 8 63 207
-8 256 16 7 65
-9 81 193 10 208
-10 11 146 9 130
-11 12 67 211 10
-12 11 13 4 20
-13 12 14 85 197
-14 13 134 15 150
-15 14 16 71 215
-16 24 15 73 8
-17 89 201 18 216
-18 154 17 138 19
-19 18 20 75 219
-20 12 28 19 21
-21 22 93 205 20
-22 23 158 21 142
-23 22 24 79 223
-24 23 81 16 32
-25 209 26 224 97
-26 25 146 27 162
-27 26 28 83 227
-28 36 27 29 20
-29 101 213 28 30
-30 166 29 150 31
-31 231 30 32 87
-32 89 24 40 31
-33 34 232 105 217
-34 33 154 35 170
-35 34 36 91 235
-36 44 35 37 28
-37 221 36 38 109
-38 37 158 39 174
-39 38 40 95 239
-40 48 39 97 32
-41 113 225 42 240
-42 178 41 162 43
-43 44 99 243 42
-44 45 36 52 43
-45 44 46 117 229
-46 45 166 47 182
-47 46 48 103 247
-48 56 47 105 40
-49 121 233 50 248
-50 49 170 51 186
-51 50 52 107 251
-52 44 60 51 53
-53 125 237 52 54
-54 55 190 53 174
-55 56 111 255 54
-56 55 113 48 64
-57 58 256 129 241
-58 57 178 59 194
-59 3 58 60 115
-60 68 59 61 52
-61 133 245 60 62
-62 198 61 182 63
-63 7 62 64 119
-64 121 56 72 63
-65 66 137 249 8
-66 67 202 65 186
-67 11 66 68 123
-68 67 69 60 76
-69 253 68 70 141
-70 69 190 71 206
-71 15 70 72 127
-72 80 71 129 64
-73 1 145 16 74
-74 210 73 194 75
-75 19 74 76 131
-76 77 68 84 75
-77 78 5 149 76
-78 77 198 79 214
-79 23 78 80 135
-80 88 79 137 72
-81 24 82 9 153
-82 81 202 83 218
-83 27 82 84 139
-84 92 83 85 76
-85 13 157 84 86
-86 222 85 206 87
-87 88 143 31 86
-88 145 80 96 87
-89 90 17 161 32
-90 89 210 91 226
-91 35 90 92 147
-92 100 91 93 84
-93 165 92 94 21
-94 93 214 95 230
-95 39 94 96 151
-96 88 104 95 153
-97 25 169 40 98
-98 99 234 97 218
-99 100 155 43 98
-100 99 101 92 108
-101 100 102 29 173
-102 101 222 103 238
-103 47 102 104 159
-104 112 103 161 96
-105 33 177 48 106
-106 242 105 226 107
-107 51 106 108 163
-108 100 116 107 109
-109 110 37 181 108
-110 111 246 109 230
-111 55 110 112 167
-112 111 169 104 120
-113 56 114 41 185
-114 113 234 115 250
-115 59 114 116 171
-116 124 115 117 108
-117 45 189 116 118
-118 254 117 238 119
-119 63 118 120 175
-120 177 112 128 119
-121 122 49 193 64
-122 121 242 2 123
-123 67 122 124 179
-124 132 123 125 116
-125 124 126 53 197
-126 125 246 6 127
-127 71 126 128 183
-128 136 127 185 120
-129 57 201 72 130
-130 129 250 10 131
-131 132 187 75 130
-132 133 124 140 131
-133 132 134 61 205
-134 133 254 14 135
-135 79 134 136 191
-136 144 135 193 128
-137 209 80 138 65
-138 2 137 18 139
-139 83 138 140 195
-140 132 148 139 141
-141 69 213 140 142
-142 22 143 6 141
-143 144 199 87 142
-144 143 201 136 152
-145 88 146 73 217
-146 145 26 147 10
-147 91 146 148 203
-148 156 147 149 140
-149 77 221 148 150
-150 14 149 30 151
-151 95 150 152 207
-152 209 144 160 151
-153 154 81 225 96
-154 34 155 18 153
-155 99 154 156 211
-156 155 157 148 164
-157 156 158 85 229
-158 22 157 38 159
-159 103 158 160 215
-160 168 159 217 152
-161 89 233 104 162
-162 26 161 42 163
-163 107 162 164 219
-164 165 156 172 163
-165 166 93 237 164
-166 165 46 167 30
-167 111 166 168 223
-168 176 167 225 160
-169 112 170 97 241
-170 34 169 50 171
-171 115 170 172 227
-172 180 171 173 164
-173 101 245 172 174
-174 38 173 54 175
-175 176 231 119 174
-176 233 168 184 175
-177 178 105 249 120
-178 177 58 179 42
-179 123 178 180 235
-180 188 179 181 172
-181 253 180 182 109
-182 46 181 62 183
-183 127 182 184 239
-184 176 192 183 241
-185 1 113 128 186
-186 66 187 50 185
-187 188 243 131 186
-188 187 189 180 196
-189 188 190 5 117
-190 189 70 191 54
-191 135 190 192 247
-192 200 191 249 184
-193 121 136 194 9
-194 58 193 74 195
-195 139 194 196 251
-196 188 204 195 197
-197 198 13 125 196
-198 78 199 62 197
-199 143 198 200 255
-200 1 199 192 208
-201 144 202 17 129
-202 66 201 82 203
-203 3 147 202 204
-204 212 203 205 196
-205 133 204 206 21
-206 70 205 86 207
-207 7 151 206 208
-208 200 216 9 207
-209 210 25 137 152
-210 209 90 211 74
-211 11 155 210 212
-212 220 211 213 204
-213 212 214 29 141
-214 78 213 94 215
-215 15 159 214 216
-216 224 17 215 208
-217 33 145 160 218
-218 82 217 98 219
-219 220 19 163 218
-220 221 212 228 219
-221 220 222 37 149
-222 221 102 223 86
-223 23 167 222 224
-224 232 25 223 216
-225 168 226 41 153
-226 90 225 106 227
-227 27 171 226 228
-228 220 236 227 229
-229 45 157 228 230
-230 110 231 94 229
-231 232 31 175 230
-232 33 231 224 240
-233 176 234 49 161
-234 233 114 235 98
-235 35 179 234 236
-236 244 235 237 228
-237 165 236 238 53
-238 102 237 118 239
-239 39 183 238 240
-240 232 248 41 239
-241 242 57 169 184
-242 122 243 106 241
-243 187 242 244 43
-244 243 245 236 252
-245 244 246 61 173
-246 110 245 126 247
-247 47 191 246 248
-248 256 49 247 240
-249 177 192 250 65
-250 114 249 130 251
-251 51 195 250 252
-252 253 244 4 251
-253 254 69 181 252
-254 253 134 255 118
-255 55 199 254 256
-256 57 255 248 8
0

**************