C4graphGraph forms for C4 [ 256, 28 ] = PL(LoPr_32(1,16,2,16,1),[4^32,32^4])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 28 ] = PL(LoPr_32(1,16,2,16,1),[4^32,32^4]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 150}, {128, 155}, {128, 223}, {128, 243}, {62, 190}, {103, 231}, {70, 198}, {2, 131}, {27, 154}, {79, 206}, {1, 131}, {119, 245}, {116, 246}, {108, 238}, {99, 225}, {32, 162}, {82, 208}, {2, 129}, {108, 239}, {104, 235}, {36, 167}, {68, 199}, {86, 213}, {50, 182}, {113, 245}, {106, 238}, {62, 186}, {79, 203}, {3, 134}, {41, 172}, {40, 173}, {15, 138}, {8, 141}, {76, 201}, {5, 131}, {117, 243}, {114, 244}, {93, 219}, {58, 188}, {56, 190}, {1, 134}, {6, 129}, {4, 131}, {107, 227}, {114, 250}, {4, 141}, {125, 244}, {107, 226}, {37, 172}, {26, 147}, {12, 134}, {118, 252}, {97, 235}, {55, 189}, {49, 187}, {35, 168}, {48, 187}, {63, 180}, {10, 134}, {127, 243}, {84, 216}, {89, 213}, {7, 138}, {121, 244}, {97, 236}, {96, 237}, {69, 200}, {71, 202}, {10, 132}, {120, 246}, {35, 173}, {28, 147}, {99, 236}, {33, 174}, {48, 160}, {119, 231}, {101, 245}, {60, 172}, {86, 198}, {11, 154}, {51, 162}, {22, 132}, {100, 246}, {31, 140}, {126, 237}, {106, 249}, {44, 191}, {72, 219}, {5, 145}, {110, 250}, {95, 203}, {46, 186}, {43, 191}, {21, 129}, {47, 186}, {123, 238}, {59, 174}, {18, 132}, {123, 237}, {101, 243}, {98, 244}, {93, 203}, {59, 173}, {77, 219}, {26, 141}, {121, 238}, {110, 249}, {49, 166}, {18, 138}, {122, 226}, {111, 247}, {25, 129}, {16, 137}, {54, 175}, {36, 189}, {52, 174}, {102, 252}, {96, 250}, {66, 216}, {77, 215}, {22, 141}, {122, 225}, {37, 190}, {13, 145}, {56, 164}, {33, 189}, {46, 179}, {113, 236}, {112, 237}, {61, 160}, {87, 202}, {88, 197}, {54, 168}, {127, 225}, {117, 235}, {12, 147}, {115, 236}, {105, 246}, {55, 168}, {87, 200}, {9, 169}, {126, 222}, {112, 208}, {67, 227}, {85, 245}, {27, 186}, {52, 149}, {63, 158}, {3, 161}, {60, 158}, {38, 132}, {30, 188}, {11, 169}, {73, 234}, {125, 222}, {124, 223}, {90, 249}, {88, 251}, {14, 170}, {116, 208}, {67, 231}, {30, 187}, {39, 130}, {64, 229}, {7, 161}, {120, 222}, {109, 203}, {25, 191}, {21, 179}, {81, 247}, {13, 170}, {94, 249}, {53, 146}, {51, 148}, {69, 226}, {23, 191}, {118, 222}, {109, 197}, {95, 247}, {34, 138}, {8, 161}, {32, 137}, {25, 179}, {74, 224}, {80, 250}, {24, 179}, {57, 146}, {41, 130}, {78, 229}, {6, 170}, {115, 223}, {17, 189}, {76, 224}, {15, 162}, {104, 197}, {75, 230}, {68, 234}, {82, 252}, {38, 137}, {103, 200}, {64, 239}, {75, 228}, {23, 167}, {111, 223}, {57, 137}, {34, 146}, {16, 161}, {47, 158}, {24, 169}, {73, 248}, {14, 188}, {98, 208}, {83, 225}, {20, 167}, {102, 213}, {92, 239}, {41, 154}, {72, 251}, {89, 234}, {19, 167}, {83, 231}, {44, 154}, {65, 247}, {71, 241}, {29, 170}, {85, 226}, {58, 130}, {91, 227}, {21, 172}, {124, 197}, {53, 140}, {65, 251}, {90, 224}, {74, 240}, {81, 235}, {42, 145}, {94, 229}, {45, 145}, {105, 213}, {100, 216}, {92, 224}, {20, 169}, {31, 162}, {29, 160}, {19, 173}, {60, 130}, {50, 140}, {45, 147}, {66, 252}, {70, 248}, {78, 240}, {84, 234}, {80, 239}, {91, 228}, {1, 193}, {4, 196}, {5, 196}, {57, 248}, {86, 151}, {14, 204}, {91, 153}, {61, 255}, {77, 143}, {87, 149}, {2, 193}, {123, 184}, {18, 209}, {25, 220}, {116, 177}, {74, 143}, {26, 220}, {115, 181}, {101, 163}, {55, 241}, {34, 228}, {32, 230}, {27, 221}, {95, 152}, {117, 178}, {108, 171}, {9, 193}, {17, 217}, {15, 199}, {10, 194}, {87, 159}, {9, 192}, {69, 140}, {86, 159}, {11, 193}, {120, 178}, {58, 240}, {49, 251}, {35, 233}, {8, 195}, {122, 177}, {23, 220}, {3, 207}, {126, 178}, {106, 166}, {105, 165}, {62, 242}, {27, 214}, {84, 153}, {89, 148}, {1, 207}, {127, 177}, {62, 240}, {54, 248}, {12, 194}, {28, 211}, {38, 233}, {83, 156}, {20, 196}, {104, 184}, {51, 227}, {30, 206}, {5, 212}, {53, 228}, {17, 192}, {68, 149}, {30, 204}, {93, 143}, {71, 149}, {76, 158}, {14, 221}, {46, 253}, {34, 241}, {16, 195}, {84, 135}, {29, 201}, {108, 184}, {81, 133}, {15, 218}, {100, 177}, {48, 229}, {42, 255}, {90, 143}, {4, 210}, {99, 181}, {20, 194}, {67, 148}, {101, 178}, {98, 181}, {23, 207}, {31, 199}, {13, 212}, {96, 185}, {39, 254}, {31, 198}, {70, 159}, {3, 217}, {109, 183}, {39, 253}, {37, 255}, {8, 210}, {6, 221}, {10, 209}, {73, 146}, {19, 207}, {46, 242}, {24, 196}, {7, 218}, {59, 230}, {11, 214}, {68, 153}, {73, 148}, {7, 217}, {110, 176}, {12, 211}, {69, 165}, {103, 135}, {88, 184}, {9, 232}, {106, 139}, {28, 253}, {66, 163}, {28, 254}, {18, 241}, {115, 144}, {100, 135}, {56, 219}, {75, 175}, {127, 155}, {120, 156}, {97, 133}, {79, 171}, {24, 253}, {75, 174}, {83, 182}, {36, 194}, {125, 155}, {112, 150}, {109, 139}, {104, 142}, {36, 195}, {65, 166}, {80, 183}, {82, 181}, {40, 192}, {63, 215}, {76, 164}, {81, 185}, {88, 176}, {37, 204}, {97, 136}, {70, 175}, {80, 185}, {21, 255}, {124, 150}, {119, 157}, {114, 152}, {94, 180}, {93, 183}, {61, 215}, {59, 209}, {50, 216}, {32, 202}, {38, 205}, {123, 144}, {118, 157}, {43, 192}, {33, 205}, {113, 157}, {98, 142}, {54, 218}, {72, 164}, {77, 160}, {122, 151}, {118, 155}, {94, 176}, {126, 144}, {29, 242}, {71, 168}, {78, 190}, {119, 135}, {85, 165}, {45, 220}, {102, 151}, {63, 206}, {82, 163}, {26, 232}, {121, 139}, {107, 153}, {47, 221}, {52, 199}, {50, 198}, {95, 171}, {91, 175}, {57, 205}, {56, 204}, {55, 195}, {66, 182}, {60, 201}, {105, 156}, {67, 182}, {16, 230}, {110, 152}, {96, 150}, {74, 188}, {85, 163}, {64, 183}, {124, 139}, {111, 152}, {92, 171}, {6, 254}, {125, 133}, {112, 136}, {103, 159}, {92, 164}, {47, 215}, {44, 212}, {43, 211}, {33, 217}, {65, 185}, {72, 176}, {17, 232}, {113, 136}, {52, 205}, {51, 202}, {48, 201}, {43, 210}, {40, 209}, {35, 218}, {19, 233}, {40, 210}, {78, 180}, {45, 214}, {117, 142}, {102, 157}, {64, 187}, {79, 180}, {2, 254}, {121, 133}, {116, 136}, {114, 142}, {107, 151}, {90, 166}, {42, 214}, {89, 165}, {41, 212}, {53, 200}, {22, 232}, {13, 242}, {111, 144}, {99, 156}, {49, 206}, {44, 211}, {22, 233}, {39, 256}, {42, 256}, {58, 256}, {61, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 150} under the group generated by the following permutations:

a: (1, 2, 6, 14, 30, 49, 65, 81, 97, 113, 119, 103, 87, 71, 55, 36, 20, 24, 46, 62, 78, 94, 110, 114, 98, 82, 66, 50, 31, 15, 7, 3)(4, 28, 27, 37, 48, 90, 95, 104, 112, 118, 83, 69, 68, 54, 16, 10, 9, 25, 13, 58, 63, 72, 80, 121, 115, 101, 100, 86, 51, 34, 33, 19)(5, 39, 47, 56, 64, 106, 111, 117, 116, 102, 67, 53, 52, 35, 8, 12, 11, 21, 29, 74, 79, 88, 96, 125, 99, 85, 84, 70, 32, 18, 17, 23)(22, 43, 45, 41, 61, 76, 93, 108, 124, 126, 127, 105, 107, 73, 75, 38, 40, 26, 44, 42, 60, 77, 92, 109, 123, 128, 120, 122, 89, 91, 57, 59)(129, 170, 188, 206, 251, 185, 133, 236, 245, 135, 159, 202, 241, 189, 167, 196, 253, 186, 190, 229, 249, 152, 142, 208, 252, 182, 140, 199, 218, 161, 134, 193)(130, 215, 164, 183, 238, 223, 178, 177, 213, 227, 146, 174, 233, 210, 147, 154, 255, 201, 143, 171, 197, 237, 155, 156, 226, 234, 175, 137, 209, 232, 191, 145)(131, 254, 221, 204, 187, 166, 247, 235, 136, 157, 231, 200, 149, 168, 195, 194, 169, 179, 242, 240, 180, 176, 250, 244, 181, 163, 216, 198, 162, 138, 217, 207)(132, 192, 220, 212, 256, 158, 219, 239, 139, 144, 243, 246, 151, 148, 228, 205, 173, 141, 211, 214, 172, 160, 224, 203, 184, 150, 222, 225, 165, 153, 248, 230)
b: (10, 19)(12, 23)(18, 35)(21, 39)(22, 40)(25, 28)(26, 43)(34, 54)(37, 58)(38, 59)(41, 42)(44, 45)(53, 70)(56, 74)(57, 75)(60, 61)(69, 86)(72, 90)(73, 91)(76, 77)(85, 102)(88, 106)(89, 107)(92, 93)(101, 118)(104, 121)(105, 122)(108, 109)(117, 125)(120, 127)(123, 124)(126, 128)(129, 254)(130, 255)(132, 173)(133, 235)(134, 207)(137, 230)(138, 218)(139, 184)(140, 198)(141, 210)(142, 244)(143, 164)(144, 223)(145, 212)(146, 175)(147, 191)(148, 227)(150, 237)(151, 165)(153, 234)(154, 214)(155, 178)(156, 225)(157, 245)(158, 215)(159, 200)(160, 201)(163, 252)(166, 251)(167, 194)(168, 241)(171, 203)(172, 256)(174, 205)(176, 249)(177, 246)(179, 253)(183, 239)(188, 204)(190, 240)(192, 232)(197, 238)(209, 233)(211, 220)(213, 226)(219, 224)(222, 243)(228, 248)
c: (22, 40)(26, 43)(38, 59)(41, 42)(44, 45)(57, 75)(60, 61)(73, 91)(76, 77)(89, 107)(92, 93)(105, 122)(108, 109)(120, 127)(123, 124)(126, 128)(130, 256)(132, 209)(137, 230)(139, 238)(141, 210)(143, 224)(144, 223)(145, 212)(146, 228)(147, 211)(148, 227)(150, 237)(151, 213)(153, 234)(154, 214)(155, 222)(156, 225)(158, 215)(160, 201)(164, 219)(165, 226)(171, 203)(172, 255)(173, 233)(174, 205)(175, 248)(177, 246)(178, 243)(183, 239)(184, 197)(191, 220)(192, 232)
d: (2, 3)(4, 12)(5, 10)(6, 7)(8, 28)(9, 23)(11, 19)(13, 18)(14, 15)(16, 39)(17, 25)(21, 33)(22, 45)(24, 36)(27, 35)(29, 34)(30, 31)(32, 58)(37, 52)(38, 42)(40, 44)(41, 59)(46, 55)(47, 54)(48, 53)(49, 50)(51, 74)(56, 68)(57, 61)(60, 75)(62, 71)(63, 70)(64, 69)(65, 66)(67, 90)(72, 84)(73, 77)(76, 91)(78, 87)(79, 86)(80, 85)(81, 82)(83, 106)(88, 100)(89, 93)(92, 107)(94, 103)(95, 102)(96, 101)(97, 98)(99, 121)(104, 116)(105, 109)(108, 122)(110, 119)(111, 118)(112, 117)(113, 114)(115, 125)(120, 124)(123, 127)(126, 128)(129, 217)(130, 230)(131, 134)(132, 145)(133, 181)(135, 176)(136, 142)(137, 256)(138, 170)(139, 156)(140, 187)(141, 147)(143, 148)(144, 155)(146, 160)(149, 190)(150, 178)(151, 171)(152, 157)(153, 164)(154, 173)(158, 175)(159, 180)(161, 254)(162, 188)(163, 185)(165, 183)(166, 182)(167, 169)(168, 186)(172, 174)(177, 184)(179, 189)(191, 192)(193, 207)(194, 196)(195, 253)(197, 246)(198, 206)(199, 204)(200, 229)(201, 228)(202, 240)(203, 213)(205, 255)(208, 235)(209, 212)(210, 211)(214, 233)(215, 248)(216, 251)(218, 221)(219, 234)(220, 232)(222, 223)(224, 227)(225, 238)(226, 239)(231, 249)(236, 244)(237, 243)(241, 242)(245, 250)(247, 252)
e: (1, 4)(2, 5)(3, 8)(6, 13)(7, 16)(9, 20)(10, 22)(11, 24)(12, 26)(14, 29)(15, 32)(17, 36)(18, 38)(19, 40)(21, 41)(23, 43)(25, 44)(27, 46)(28, 45)(30, 48)(31, 51)(33, 55)(34, 57)(35, 59)(37, 60)(39, 42)(47, 62)(49, 64)(50, 67)(52, 71)(53, 73)(54, 75)(56, 76)(58, 61)(63, 78)(65, 80)(66, 83)(68, 87)(69, 89)(70, 91)(72, 92)(74, 77)(79, 94)(81, 96)(82, 99)(84, 103)(85, 105)(86, 107)(88, 108)(90, 93)(95, 110)(97, 112)(98, 115)(100, 119)(101, 120)(102, 122)(104, 123)(106, 109)(111, 114)(113, 116)(117, 126)(118, 127)(121, 124)(125, 128)(129, 212)(130, 255)(133, 150)(134, 141)(137, 138)(140, 148)(142, 144)(145, 254)(153, 159)(154, 179)(156, 163)(157, 177)(158, 190)(160, 188)(166, 183)(167, 192)(168, 174)(171, 176)(193, 196)(194, 232)(195, 217)(197, 238)(198, 227)(199, 202)(200, 234)(201, 204)(203, 249)(205, 241)(206, 229)(207, 210)(208, 236)(209, 233)(211, 220)(213, 226)(214, 253)(215, 240)(216, 231)(218, 230)(219, 224)(221, 242)(222, 243)(223, 244)(225, 252)(228, 248)(235, 237)(239, 251)(245, 246)(247, 250)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 28 ]
256
-1 134 193 207 131
-2 254 193 129 131
-3 134 161 217 207
-4 210 141 196 131
-5 145 212 196 131
-6 221 254 170 129
-7 138 161 217 218
-8 210 161 195 141
-9 232 169 192 193
-10 132 209 134 194
-11 154 169 214 193
-12 134 211 147 194
-13 242 145 212 170
-14 188 221 170 204
-15 199 138 162 218
-16 137 161 195 230
-17 232 189 192 217
-18 132 209 138 241
-19 167 233 173 207
-20 167 169 194 196
-21 255 179 172 129
-22 132 232 233 141
-23 220 167 191 207
-24 253 179 169 196
-25 220 179 191 129
-26 220 232 147 141
-27 154 221 214 186
-28 253 254 211 147
-29 242 201 170 160
-30 187 188 204 206
-31 198 199 140 162
-32 202 137 162 230
-33 189 205 217 174
-34 146 138 228 241
-35 233 168 173 218
-36 167 189 194 195
-37 255 190 204 172
-38 132 233 137 205
-39 253 254 256 130
-40 209 210 192 173
-41 154 212 172 130
-42 145 255 256 214
-43 210 211 191 192
-44 154 211 212 191
-45 220 145 147 214
-46 242 253 179 186
-47 221 158 215 186
-48 187 201 160 229
-49 187 166 206 251
-50 198 182 216 140
-51 202 148 227 162
-52 199 149 205 174
-53 200 146 140 228
-54 168 248 218 175
-55 189 168 195 241
-56 190 204 164 219
-57 146 137 248 205
-58 188 256 130 240
-59 209 173 174 230
-60 201 158 172 130
-61 255 256 160 215
-62 242 190 240 186
-63 158 180 215 206
-64 187 183 239 229
-65 166 247 185 251
-66 182 216 163 252
-67 231 148 182 227
-68 199 234 149 153
-69 165 200 226 140
-70 198 159 248 175
-71 168 202 149 241
-72 176 251 164 219
-73 146 234 148 248
-74 143 188 224 240
-75 228 174 175 230
-76 201 158 224 164
-77 143 160 215 219
-78 190 180 229 240
-79 180 203 171 206
-80 183 239 250 185
-81 133 235 247 185
-82 181 163 208 252
-83 231 156 225 182
-84 135 234 216 153
-85 165 245 226 163
-86 198 213 159 151
-87 200 202 159 149
-88 176 184 251 197
-89 165 234 213 148
-90 143 166 224 249
-91 227 228 153 175
-92 224 171 239 164
-93 143 203 183 219
-94 176 180 249 229
-95 203 247 171 152
-96 237 150 250 185
-97 133 136 235 236
-98 244 181 142 208
-99 156 181 225 236
-100 177 135 246 216
-101 243 178 245 163
-102 157 213 151 252
-103 231 200 135 159
-104 235 184 142 197
-105 165 156 213 246
-106 166 139 238 249
-107 226 227 151 153
-108 171 238 184 239
-109 203 139 183 197
-110 176 249 250 152
-111 144 223 247 152
-112 136 237 150 208
-113 157 245 136 236
-114 244 250 152 142
-115 144 223 181 236
-116 177 136 246 208
-117 243 178 235 142
-118 155 222 157 252
-119 231 135 157 245
-120 156 178 222 246
-121 133 244 139 238
-122 177 225 226 151
-123 144 237 238 184
-124 223 139 150 197
-125 133 155 222 244
-126 144 178 222 237
-127 155 177 243 225
-128 155 243 223 150
-129 2 25 6 21
-130 58 60 39 41
-131 1 2 4 5
-132 22 38 18 10
-133 121 81 125 97
-134 1 12 3 10
-135 100 103 84 119
-136 112 113 116 97
-137 57 16 38 32
-138 34 15 7 18
-139 121 124 106 109
-140 69 50 31 53
-141 22 4 26 8
-142 114 104 117 98
-143 77 90 93 74
-144 111 123 115 126
-145 45 13 5 42
-146 34 57 73 53
-147 12 45 26 28
-148 67 89 51 73
-149 68 71 52 87
-150 112 124 128 96
-151 122 102 107 86
-152 110 111 114 95
-153 68 91 84 107
-154 11 44 27 41
-155 125 127 128 118
-156 99 83 105 120
-157 102 113 118 119
-158 47 60 63 76
-159 70 103 86 87
-160 77 48 61 29
-161 3 16 7 8
-162 15 51 31 32
-163 66 101 82 85
-164 56 92 72 76
-165 89 69 105 85
-166 90 49 106 65
-167 23 36 19 20
-168 55 35 71 54
-169 11 24 9 20
-170 13 14 6 29
-171 79 92 95 108
-172 37 60 41 21
-173 35 59 40 19
-174 33 59 52 75
-175 91 70 75 54
-176 88 110 72 94
-177 100 122 116 127
-178 101 126 117 120
-179 24 46 25 21
-180 78 79 94 63
-181 99 82 115 98
-182 66 67 50 83
-183 80 93 64 109
-184 88 123 104 108
-185 80 81 96 65
-186 46 47 27 62
-187 48 49 30 64
-188 14 58 30 74
-189 33 55 36 17
-190 56 78 37 62
-191 44 23 25 43
-192 17 40 9 43
-193 11 1 2 9
-194 12 36 20 10
-195 55 36 16 8
-196 24 4 5 20
-197 88 124 104 109
-198 70 50 31 86
-199 68 15 52 31
-200 69 103 53 87
-201 48 60 29 76
-202 71 51 32 87
-203 79 93 95 109
-204 56 14 37 30
-205 33 57 38 52
-206 79 49 30 63
-207 1 23 3 19
-208 112 82 116 98
-209 59 18 40 10
-210 4 40 8 43
-211 44 12 28 43
-212 44 13 5 41
-213 89 102 105 86
-214 11 45 27 42
-215 77 47 61 63
-216 66 100 50 84
-217 33 3 17 7
-218 35 15 7 54
-219 77 56 93 72
-220 23 45 25 26
-221 14 47 27 6
-222 125 126 118 120
-223 111 124 115 128
-224 90 92 74 76
-225 99 122 83 127
-226 122 69 85 107
-227 67 91 51 107
-228 34 91 53 75
-229 78 48 94 64
-230 59 16 75 32
-231 67 103 83 119
-232 22 26 17 9
-233 22 35 38 19
-234 89 68 73 84
-235 81 104 117 97
-236 99 113 115 97
-237 112 123 126 96
-238 121 123 106 108
-239 80 92 64 108
-240 78 58 62 74
-241 55 34 71 18
-242 13 46 29 62
-243 101 127 117 128
-244 121 114 125 98
-245 101 113 85 119
-246 100 105 116 120
-247 111 81 95 65
-248 57 70 73 54
-249 110 90 94 106
-250 110 80 114 96
-251 88 49 72 65
-252 66 102 82 118
-253 24 46 28 39
-254 2 6 28 39
-255 37 61 42 21
-256 58 39 61 42
0

**************