C4graphGraph forms for C4 [ 256, 29 ] = PL(LoPr_32(1,16,6,16,1),[4^32,32^4])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 29 ] = PL(LoPr_32(1,16,6,16,1),[4^32,32^4]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 189}, {128, 190}, {128, 227}, {128, 243}, {7, 135}, {112, 240}, {105, 233}, {95, 223}, {50, 178}, {23, 151}, {11, 139}, {2, 131}, {46, 175}, {33, 160}, {30, 159}, {28, 157}, {22, 151}, {75, 202}, {81, 208}, {1, 131}, {55, 181}, {11, 137}, {2, 129}, {112, 243}, {31, 156}, {20, 151}, {74, 201}, {25, 157}, {111, 235}, {91, 223}, {45, 169}, {85, 209}, {113, 244}, {5, 131}, {118, 240}, {117, 243}, {99, 229}, {51, 181}, {8, 142}, {73, 207}, {80, 214}, {4, 131}, {119, 240}, {118, 241}, {99, 228}, {12, 139}, {6, 129}, {63, 184}, {3, 139}, {107, 227}, {98, 234}, {46, 166}, {38, 174}, {15, 135}, {56, 177}, {94, 215}, {88, 209}, {1, 139}, {120, 242}, {52, 190}, {47, 165}, {65, 203}, {26, 145}, {121, 242}, {98, 233}, {32, 171}, {67, 200}, {70, 205}, {29, 145}, {89, 213}, {32, 172}, {22, 155}, {31, 146}, {25, 148}, {64, 205}, {67, 206}, {73, 199}, {85, 219}, {86, 216}, {40, 167}, {57, 182}, {41, 166}, {60, 179}, {77, 194}, {39, 183}, {13, 156}, {113, 224}, {104, 249}, {90, 203}, {54, 167}, {91, 201}, {95, 205}, {12, 159}, {26, 137}, {18, 134}, {125, 233}, {61, 169}, {62, 170}, {84, 192}, {4, 145}, {116, 225}, {49, 164}, {42, 191}, {17, 132}, {66, 215}, {71, 210}, {78, 219}, {71, 209}, {49, 166}, {60, 171}, {68, 211}, {87, 192}, {33, 185}, {37, 189}, {69, 221}, {8, 145}, {124, 229}, {24, 129}, {76, 213}, {83, 202}, {7, 157}, {121, 227}, {27, 129}, {19, 137}, {76, 214}, {19, 143}, {119, 235}, {62, 162}, {47, 178}, {100, 249}, {65, 220}, {3, 157}, {114, 236}, {59, 165}, {34, 188}, {16, 142}, {61, 163}, {43, 180}, {127, 224}, {114, 237}, {18, 178}, {80, 240}, {100, 197}, {14, 172}, {122, 216}, {108, 206}, {59, 153}, {36, 134}, {21, 183}, {14, 173}, {108, 207}, {58, 153}, {79, 235}, {126, 218}, {103, 195}, {102, 194}, {44, 137}, {81, 244}, {75, 237}, {24, 191}, {126, 217}, {35, 132}, {55, 159}, {102, 206}, {50, 155}, {94, 247}, {69, 236}, {78, 231}, {37, 143}, {74, 224}, {77, 231}, {6, 173}, {105, 194}, {90, 241}, {88, 243}, {39, 140}, {72, 227}, {16, 188}, {27, 183}, {23, 186}, {122, 215}, {116, 217}, {53, 152}, {63, 146}, {82, 255}, {35, 141}, {38, 136}, {36, 138}, {15, 160}, {124, 211}, {123, 212}, {97, 206}, {28, 179}, {24, 183}, {21, 186}, {70, 233}, {5, 181}, {104, 216}, {92, 236}, {54, 134}, {10, 186}, {83, 226}, {87, 230}, {48, 130}, {53, 135}, {84, 230}, {9, 186}, {40, 155}, {29, 169}, {110, 218}, {56, 140}, {30, 170}, {84, 225}, {125, 200}, {110, 219}, {68, 242}, {93, 235}, {92, 234}, {89, 238}, {127, 200}, {101, 210}, {10, 178}, {123, 195}, {109, 213}, {106, 210}, {96, 216}, {52, 140}, {44, 148}, {34, 154}, {13, 181}, {66, 250}, {86, 238}, {72, 241}, {115, 202}, {109, 212}, {107, 210}, {106, 211}, {93, 228}, {20, 174}, {115, 201}, {111, 213}, {97, 219}, {42, 144}, {64, 250}, {103, 220}, {120, 195}, {58, 134}, {96, 221}, {27, 165}, {57, 135}, {41, 151}, {43, 148}, {101, 218}, {82, 237}, {1, 193}, {123, 187}, {98, 162}, {55, 247}, {55, 246}, {97, 160}, {94, 159}, {56, 249}, {97, 163}, {118, 180}, {2, 193}, {120, 187}, {119, 180}, {95, 156}, {19, 208}, {7, 196}, {59, 248}, {8, 204}, {121, 189}, {120, 188}, {61, 249}, {28, 217}, {121, 188}, {103, 162}, {51, 246}, {61, 248}, {3, 196}, {107, 172}, {91, 156}, {47, 232}, {37, 226}, {82, 149}, {9, 193}, {47, 231}, {34, 234}, {9, 192}, {122, 179}, {101, 172}, {37, 236}, {12, 198}, {117, 191}, {45, 231}, {15, 197}, {81, 155}, {10, 193}, {117, 190}, {104, 163}, {31, 212}, {71, 140}, {51, 255}, {122, 182}, {73, 133}, {11, 198}, {93, 144}, {88, 149}, {48, 253}, {79, 130}, {17, 223}, {126, 176}, {111, 161}, {48, 254}, {67, 141}, {68, 138}, {70, 136}, {65, 142}, {92, 147}, {89, 150}, {14, 222}, {105, 185}, {96, 176}, {45, 253}, {17, 192}, {126, 175}, {38, 247}, {23, 198}, {74, 152}, {115, 161}, {105, 187}, {14, 221}, {101, 182}, {45, 254}, {40, 251}, {86, 133}, {54, 226}, {108, 184}, {90, 142}, {76, 152}, {42, 255}, {113, 164}, {100, 177}, {90, 143}, {53, 224}, {87, 130}, {36, 242}, {92, 138}, {44, 251}, {6, 222}, {112, 168}, {34, 250}, {66, 154}, {76, 148}, {18, 203}, {93, 132}, {52, 237}, {40, 241}, {71, 158}, {32, 250}, {116, 174}, {50, 232}, {39, 253}, {74, 144}, {11, 208}, {116, 175}, {115, 168}, {28, 199}, {62, 229}, {69, 158}, {72, 147}, {16, 204}, {100, 184}, {89, 133}, {25, 199}, {110, 176}, {104, 182}, {102, 184}, {43, 244}, {125, 162}, {110, 177}, {8, 232}, {109, 141}, {21, 245}, {15, 238}, {114, 147}, {43, 202}, {29, 252}, {26, 251}, {23, 245}, {50, 208}, {5, 230}, {57, 218}, {42, 201}, {27, 248}, {20, 247}, {67, 160}, {33, 197}, {77, 169}, {29, 248}, {112, 149}, {60, 217}, {26, 252}, {124, 154}, {56, 222}, {86, 176}, {17, 246}, {119, 144}, {114, 149}, {113, 150}, {99, 132}, {59, 220}, {49, 214}, {24, 255}, {21, 253}, {98, 138}, {87, 191}, {7, 238}, {127, 150}, {108, 133}, {13, 228}, {46, 196}, {52, 222}, {64, 170}, {13, 230}, {99, 136}, {38, 205}, {35, 200}, {63, 212}, {64, 171}, {78, 165}, {3, 239}, {4, 232}, {12, 225}, {127, 146}, {94, 179}, {25, 244}, {22, 251}, {66, 175}, {1, 239}, {41, 199}, {18, 252}, {79, 161}, {36, 203}, {125, 146}, {41, 198}, {60, 211}, {68, 171}, {72, 167}, {73, 166}, {5, 245}, {106, 154}, {4, 245}, {19, 226}, {77, 185}, {124, 136}, {106, 158}, {80, 164}, {83, 167}, {49, 196}, {109, 152}, {95, 170}, {88, 173}, {75, 190}, {81, 164}, {10, 252}, {123, 141}, {58, 204}, {57, 207}, {39, 209}, {85, 163}, {117, 130}, {6, 254}, {107, 147}, {58, 194}, {65, 185}, {69, 189}, {80, 168}, {85, 173}, {22, 239}, {118, 143}, {111, 150}, {46, 215}, {16, 234}, {91, 161}, {54, 204}, {53, 207}, {44, 214}, {63, 197}, {84, 174}, {20, 239}, {31, 228}, {30, 229}, {83, 168}, {2, 254}, {35, 223}, {32, 221}, {33, 220}, {62, 195}, {70, 187}, {96, 158}, {103, 153}, {9, 246}, {102, 153}, {30, 225}, {75, 180}, {78, 177}, {48, 256}, {51, 256}, {79, 256}, {82, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 189} under the group generated by the following permutations:

a: (4, 10)(5, 9)(8, 18)(13, 17)(16, 36)(25, 49)(26, 50)(28, 46)(29, 47)(31, 35)(34, 68)(43, 80)(44, 81)(51, 87)(52, 88)(55, 84)(56, 85)(60, 66)(61, 78)(63, 67)(75, 112)(76, 113)(82, 117)(92, 121)(94, 116)(97, 100)(98, 120)(104, 110)(109, 127)(114, 128)(122, 126)(123, 125)(130, 256)(131, 193)(132, 228)(134, 204)(137, 208)(138, 188)(140, 209)(141, 146)(142, 203)(145, 178)(147, 227)(148, 164)(149, 190)(150, 213)(152, 224)(154, 211)(155, 251)(156, 223)(157, 196)(159, 225)(160, 197)(162, 195)(163, 177)(165, 248)(166, 199)(168, 202)(169, 231)(171, 250)(173, 222)(174, 247)(175, 179)(176, 216)(180, 240)(181, 192)(182, 218)(184, 206)(186, 245)(187, 233)(189, 236)(191, 255)(200, 212)(214, 244)(215, 217)(219, 249)(230, 246)(232, 252)(234, 242)(237, 243)
b: (26, 50)(29, 47)(44, 81)(51, 87)(55, 84)(61, 78)(76, 113)(82, 117)(92, 121)(94, 116)(98, 120)(104, 110)(109, 127)(114, 128)(122, 126)(123, 125)(130, 256)(137, 208)(138, 242)(141, 200)(145, 232)(146, 212)(147, 227)(148, 244)(149, 243)(150, 213)(152, 224)(155, 251)(159, 225)(162, 195)(163, 219)(164, 214)(165, 248)(169, 231)(174, 247)(175, 215)(176, 216)(177, 249)(178, 252)(179, 217)(181, 230)(182, 218)(187, 233)(188, 234)(189, 236)(190, 237)(191, 255)(192, 246)
c: (2, 3)(4, 12)(5, 11)(6, 7)(8, 30)(9, 22)(10, 20)(13, 19)(14, 15)(16, 62)(17, 40)(18, 38)(21, 41)(24, 49)(25, 48)(26, 55)(27, 46)(28, 45)(29, 94)(31, 37)(32, 33)(34, 103)(35, 72)(36, 70)(39, 73)(42, 80)(43, 79)(44, 51)(47, 116)(50, 84)(52, 89)(53, 88)(54, 99)(56, 86)(57, 85)(58, 124)(59, 66)(60, 77)(61, 122)(63, 69)(64, 65)(67, 107)(68, 105)(71, 108)(74, 112)(75, 111)(76, 82)(78, 126)(81, 87)(83, 93)(90, 95)(91, 118)(92, 123)(96, 100)(97, 101)(98, 120)(102, 106)(109, 114)(113, 117)(115, 119)(121, 125)(127, 128)(129, 196)(130, 244)(131, 139)(132, 167)(133, 140)(134, 136)(135, 173)(137, 181)(138, 187)(141, 147)(142, 170)(143, 156)(144, 168)(145, 159)(146, 189)(148, 256)(149, 152)(150, 190)(151, 186)(153, 154)(155, 192)(157, 254)(158, 184)(160, 172)(161, 180)(162, 188)(163, 182)(164, 191)(165, 175)(166, 183)(169, 179)(171, 185)(174, 178)(176, 177)(193, 239)(194, 211)(195, 234)(197, 221)(198, 245)(199, 253)(200, 227)(201, 240)(202, 235)(203, 205)(204, 229)(206, 210)(207, 209)(208, 230)(212, 236)(213, 237)(214, 255)(215, 248)(216, 249)(217, 231)(218, 219)(220, 250)(222, 238)(223, 241)(224, 243)(225, 232)(226, 228)(233, 242)(246, 251)(247, 252)
d: (1, 4)(2, 5)(3, 8)(6, 13)(7, 16)(9, 21)(10, 23)(11, 26)(12, 29)(14, 31)(15, 34)(17, 39)(18, 41)(19, 44)(20, 47)(22, 50)(24, 51)(25, 54)(27, 55)(28, 58)(30, 61)(32, 63)(33, 66)(35, 71)(36, 73)(37, 76)(38, 78)(40, 81)(42, 82)(43, 83)(45, 84)(46, 65)(48, 87)(49, 90)(52, 91)(53, 92)(56, 95)(57, 98)(59, 94)(60, 102)(62, 104)(64, 100)(67, 106)(68, 108)(69, 109)(70, 110)(72, 113)(74, 114)(75, 115)(77, 116)(79, 117)(80, 118)(85, 99)(86, 120)(88, 93)(89, 121)(96, 123)(97, 124)(101, 125)(103, 122)(105, 126)(107, 127)(111, 128)(112, 119)(129, 181)(132, 209)(133, 242)(134, 199)(135, 234)(136, 219)(138, 207)(139, 145)(140, 223)(141, 158)(142, 196)(143, 214)(144, 149)(146, 172)(147, 224)(148, 226)(150, 227)(151, 178)(152, 236)(153, 179)(154, 160)(156, 222)(157, 204)(159, 248)(161, 190)(162, 182)(163, 229)(164, 241)(165, 247)(166, 203)(167, 244)(168, 180)(169, 225)(170, 249)(171, 184)(173, 228)(174, 231)(175, 185)(176, 187)(177, 205)(183, 246)(188, 238)(189, 213)(191, 256)(192, 253)(193, 245)(194, 217)(195, 216)(197, 250)(198, 252)(200, 210)(201, 237)(206, 211)(208, 251)(212, 221)(215, 220)(218, 233)(230, 254)(232, 239)(235, 243)
e: (1, 2)(3, 6)(4, 5)(7, 14)(8, 13)(9, 10)(11, 48)(12, 45)(15, 32)(16, 31)(17, 18)(19, 79)(20, 27)(21, 23)(22, 24)(25, 88)(26, 51)(28, 85)(29, 55)(30, 77)(33, 64)(34, 63)(35, 36)(37, 111)(38, 59)(39, 41)(40, 42)(43, 112)(44, 82)(46, 56)(47, 84)(49, 52)(50, 87)(53, 107)(54, 93)(57, 101)(58, 99)(60, 97)(61, 94)(62, 105)(65, 95)(66, 100)(67, 68)(69, 89)(70, 103)(71, 73)(72, 74)(75, 80)(76, 114)(78, 116)(81, 117)(83, 119)(86, 96)(90, 91)(92, 109)(98, 123)(102, 124)(104, 122)(106, 108)(110, 126)(113, 128)(115, 118)(120, 125)(121, 127)(129, 239)(130, 208)(132, 134)(133, 158)(135, 172)(136, 153)(137, 256)(138, 141)(139, 254)(140, 166)(142, 156)(143, 161)(144, 167)(145, 181)(146, 188)(147, 152)(148, 149)(150, 189)(151, 183)(154, 184)(155, 191)(157, 173)(159, 169)(160, 171)(162, 187)(163, 179)(164, 190)(165, 174)(168, 180)(170, 185)(175, 177)(178, 192)(194, 229)(195, 233)(196, 222)(197, 250)(198, 253)(199, 209)(200, 242)(201, 241)(202, 240)(203, 223)(204, 228)(205, 220)(206, 211)(207, 210)(212, 234)(213, 236)(214, 237)(215, 249)(217, 219)(221, 238)(224, 227)(225, 231)(226, 235)(230, 232)(243, 244)(246, 252)(247, 248)(251, 255)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 29 ]
256
-1 193 139 239 131
-2 254 193 129 131
-3 157 139 239 196
-4 232 145 245 131
-5 245 181 131 230
-6 254 222 129 173
-7 135 157 238 196
-8 232 145 204 142
-9 246 192 193 186
-10 178 193 186 252
-11 198 137 139 208
-12 198 159 225 139
-13 156 181 228 230
-14 221 222 172 173
-15 135 160 238 197
-16 188 234 204 142
-17 132 223 246 192
-18 134 178 203 252
-19 143 137 226 208
-20 247 151 239 174
-21 253 245 183 186
-22 155 151 239 251
-23 198 245 151 186
-24 255 191 183 129
-25 199 244 157 148
-26 145 137 251 252
-27 165 248 183 129
-28 199 157 179 217
-29 145 169 248 252
-30 159 170 225 229
-31 156 146 212 228
-32 221 171 172 250
-33 220 160 185 197
-34 154 188 234 250
-35 132 200 223 141
-36 242 134 203 138
-37 143 189 236 226
-38 136 247 205 174
-39 209 253 183 140
-40 155 167 251 241
-41 198 166 199 151
-42 144 255 201 191
-43 244 180 202 148
-44 137 148 214 251
-45 231 253 254 169
-46 166 215 196 175
-47 165 231 232 178
-48 253 254 256 130
-49 166 214 196 164
-50 155 232 178 208
-51 255 256 246 181
-52 222 190 237 140
-53 135 224 152 207
-54 134 167 204 226
-55 246 159 181 247
-56 177 222 249 140
-57 135 182 207 218
-58 134 204 194 153
-59 165 220 248 153
-60 211 179 171 217
-61 169 248 249 163
-62 170 162 195 229
-63 146 212 184 197
-64 170 171 205 250
-65 220 203 185 142
-66 154 215 250 175
-67 200 160 206 141
-68 242 211 138 171
-69 221 189 158 236
-70 187 233 136 205
-71 209 210 158 140
-72 167 147 227 241
-73 133 166 199 207
-74 144 201 224 152
-75 190 180 202 237
-76 213 148 214 152
-77 231 169 194 185
-78 165 231 177 219
-79 256 235 161 130
-80 168 214 240 164
-81 155 244 164 208
-82 255 256 149 237
-83 167 168 202 226
-84 192 225 174 230
-85 209 173 163 219
-86 176 133 216 238
-87 191 192 130 230
-88 209 243 149 173
-89 133 213 150 238
-90 143 203 142 241
-91 156 201 223 161
-92 234 147 236 138
-93 132 144 235 228
-94 179 159 247 215
-95 156 223 170 205
-96 176 221 158 216
-97 160 206 163 219
-98 233 234 138 162
-99 132 136 228 229
-100 177 249 184 197
-101 210 182 172 218
-102 194 184 206 153
-103 220 162 195 153
-104 182 216 249 163
-105 187 233 194 185
-106 154 210 211 158
-107 210 147 172 227
-108 133 184 206 207
-109 212 213 141 152
-110 176 177 218 219
-111 213 235 150 161
-112 243 168 149 240
-113 244 224 150 164
-114 147 236 149 237
-115 168 201 202 161
-116 225 217 174 175
-117 243 190 191 130
-118 143 180 240 241
-119 144 180 235 240
-120 187 242 188 195
-121 242 188 189 227
-122 179 182 215 216
-123 187 212 195 141
-124 154 211 136 229
-125 200 233 146 162
-126 176 217 218 175
-127 200 146 224 150
-128 243 189 190 227
-129 2 24 27 6
-130 79 48 117 87
-131 1 2 4 5
-132 99 35 93 17
-133 89 73 86 108
-134 36 58 18 54
-135 57 15 7 53
-136 99 124 70 38
-137 11 44 26 19
-138 68 36 92 98
-139 11 1 12 3
-140 56 71 39 52
-141 67 35 123 109
-142 90 16 8 65
-143 90 37 19 118
-144 93 74 42 119
-145 4 26 29 8
-146 125 127 63 31
-147 92 114 72 107
-148 44 25 43 76
-149 88 112 114 82
-150 89 111 113 127
-151 22 23 41 20
-152 74 53 76 109
-153 58 102 59 103
-154 66 34 124 106
-155 22 81 50 40
-156 13 91 95 31
-157 3 25 28 7
-158 69 71 106 96
-159 55 12 94 30
-160 33 67 15 97
-161 111 79 91 115
-162 103 125 62 98
-163 104 61 85 97
-164 80 113 81 49
-165 78 47 59 27
-166 46 49 73 41
-167 72 83 40 54
-168 112 80 115 83
-169 77 45 61 29
-170 62 95 30 64
-171 68 60 64 32
-172 101 14 107 32
-173 88 14 6 85
-174 38 116 84 20
-175 66 46 126 116
-176 110 126 96 86
-177 110 56 78 100
-178 47 50 18 10
-179 122 60 28 94
-180 118 75 119 43
-181 55 13 5 51
-182 122 57 101 104
-183 24 27 39 21
-184 100 102 63 108
-185 33 77 105 65
-186 23 9 10 21
-187 123 70 105 120
-188 121 34 16 120
-189 121 69 37 128
-190 117 128 52 75
-191 24 117 42 87
-192 17 84 9 87
-193 1 2 9 10
-194 77 58 102 105
-195 123 103 62 120
-196 46 3 49 7
-197 33 100 15 63
-198 11 12 23 41
-199 25 28 73 41
-200 67 35 125 127
-201 91 115 74 42
-202 115 83 75 43
-203 90 36 18 65
-204 58 16 8 54
-205 70 38 95 64
-206 67 102 97 108
-207 57 73 53 108
-208 11 81 50 19
-209 88 71 39 85
-210 101 71 106 107
-211 68 124 60 106
-212 123 63 31 109
-213 89 111 76 109
-214 44 80 49 76
-215 66 122 46 94
-216 122 104 96 86
-217 60 126 28 116
-218 110 57 101 126
-219 110 78 85 97
-220 33 59 103 65
-221 14 69 96 32
-222 56 14 6 52
-223 35 91 17 95
-224 113 127 74 53
-225 12 116 84 30
-226 37 83 19 54
-227 121 72 128 107
-228 99 13 93 31
-229 99 124 62 30
-230 13 5 84 87
-231 77 45 78 47
-232 47 4 50 8
-233 70 125 105 98
-234 34 92 16 98
-235 111 79 93 119
-236 69 37 92 114
-237 114 82 52 75
-238 89 15 7 86
-239 22 1 3 20
-240 112 80 118 119
-241 90 72 40 118
-242 121 68 36 120
-243 88 112 117 128
-244 25 113 81 43
-245 23 4 5 21
-246 55 17 51 9
-247 55 38 94 20
-248 59 27 61 29
-249 56 100 104 61
-250 66 34 64 32
-251 22 44 26 40
-252 26 18 29 10
-253 45 48 39 21
-254 45 2 48 6
-255 24 82 51 42
-256 79 48 82 51
0

**************