C4graphGraph forms for C4 [ 256, 30 ] = PL(LoPr_32(1,16,2,16,7),[4^32,32^4])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 30 ] = PL(LoPr_32(1,16,2,16,7),[4^32,32^4]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 159}, {128, 170}, {128, 194}, {128, 195}, {27, 155}, {105, 233}, {91, 219}, {2, 131}, {105, 232}, {59, 186}, {28, 157}, {85, 212}, {1, 131}, {45, 175}, {74, 200}, {2, 129}, {90, 217}, {74, 201}, {60, 184}, {16, 149}, {119, 242}, {49, 180}, {42, 175}, {32, 165}, {21, 144}, {69, 192}, {5, 131}, {93, 219}, {50, 180}, {48, 182}, {34, 164}, {70, 192}, {4, 131}, {17, 150}, {6, 129}, {67, 196}, {82, 213}, {24, 144}, {95, 215}, {25, 144}, {57, 176}, {88, 210}, {101, 239}, {80, 219}, {110, 229}, {81, 218}, {35, 175}, {71, 203}, {73, 197}, {45, 160}, {123, 246}, {101, 232}, {94, 211}, {53, 184}, {79, 194}, {34, 172}, {97, 239}, {96, 238}, {63, 177}, {46, 161}, {125, 242}, {102, 233}, {11, 155}, {54, 166}, {20, 132}, {76, 220}, {5, 148}, {120, 233}, {52, 165}, {48, 161}, {22, 135}, {12, 157}, {37, 183}, {120, 234}, {62, 172}, {76, 222}, {86, 196}, {23, 132}, {21, 129}, {99, 247}, {94, 202}, {51, 167}, {26, 142}, {51, 166}, {127, 234}, {88, 205}, {66, 212}, {19, 132}, {125, 234}, {92, 203}, {25, 129}, {110, 246}, {65, 217}, {69, 221}, {78, 214}, {13, 148}, {92, 197}, {43, 178}, {33, 184}, {78, 215}, {40, 178}, {54, 172}, {29, 134}, {53, 174}, {70, 221}, {75, 208}, {79, 212}, {80, 206}, {86, 200}, {50, 173}, {119, 232}, {117, 234}, {91, 196}, {3, 163}, {109, 205}, {36, 132}, {3, 162}, {121, 216}, {47, 142}, {38, 135}, {29, 188}, {70, 231}, {72, 233}, {21, 183}, {93, 255}, {62, 156}, {87, 245}, {1, 162}, {41, 138}, {24, 187}, {7, 164}, {83, 240}, {7, 163}, {124, 216}, {30, 186}, {25, 189}, {26, 191}, {111, 202}, {90, 255}, {55, 146}, {39, 130}, {68, 225}, {77, 232}, {65, 231}, {68, 227}, {112, 215}, {100, 195}, {81, 246}, {82, 245}, {10, 162}, {121, 209}, {95, 247}, {22, 191}, {116, 221}, {107, 194}, {102, 207}, {69, 236}, {72, 225}, {15, 165}, {114, 216}, {56, 146}, {30, 180}, {23, 189}, {8, 163}, {111, 196}, {58, 145}, {18, 185}, {15, 164}, {63, 148}, {87, 252}, {37, 137}, {122, 214}, {117, 217}, {64, 236}, {84, 248}, {85, 248}, {12, 162}, {56, 150}, {17, 191}, {77, 227}, {20, 187}, {126, 209}, {115, 220}, {114, 221}, {104, 199}, {103, 200}, {60, 147}, {58, 149}, {64, 239}, {11, 187}, {57, 137}, {13, 188}, {122, 203}, {118, 199}, {98, 211}, {97, 208}, {35, 146}, {9, 187}, {113, 195}, {107, 217}, {106, 216}, {99, 209}, {96, 210}, {41, 155}, {36, 150}, {14, 188}, {10, 185}, {116, 199}, {98, 209}, {38, 149}, {16, 163}, {14, 186}, {32, 149}, {4, 178}, {104, 222}, {89, 239}, {42, 156}, {18, 164}, {9, 191}, {83, 229}, {33, 150}, {124, 203}, {119, 192}, {108, 219}, {89, 238}, {49, 134}, {44, 155}, {61, 138}, {67, 244}, {75, 252}, {84, 227}, {52, 140}, {109, 213}, {31, 166}, {126, 199}, {123, 194}, {115, 202}, {59, 130}, {6, 188}, {108, 214}, {31, 165}, {27, 161}, {8, 178}, {40, 147}, {103, 220}, {47, 148}, {44, 151}, {61, 134}, {73, 242}, {19, 175}, {127, 195}, {118, 202}, {43, 151}, {106, 215}, {125, 192}, {112, 205}, {46, 144}, {113, 207}, {100, 218}, {55, 136}, {1, 193}, {110, 174}, {54, 246}, {43, 235}, {66, 130}, {15, 206}, {116, 181}, {92, 157}, {57, 248}, {37, 228}, {61, 252}, {83, 146}, {55, 245}, {111, 173}, {106, 168}, {105, 171}, {58, 248}, {2, 193}, {125, 190}, {40, 235}, {68, 135}, {74, 137}, {79, 140}, {13, 201}, {63, 251}, {75, 143}, {85, 145}, {22, 211}, {32, 229}, {26, 223}, {71, 130}, {86, 145}, {121, 190}, {9, 193}, {99, 171}, {56, 240}, {60, 244}, {22, 223}, {98, 171}, {56, 241}, {40, 225}, {11, 193}, {44, 230}, {31, 213}, {12, 198}, {80, 154}, {38, 237}, {117, 190}, {62, 245}, {10, 198}, {107, 167}, {101, 169}, {100, 168}, {48, 252}, {34, 238}, {33, 237}, {65, 141}, {71, 139}, {84, 152}, {1, 204}, {94, 147}, {55, 250}, {30, 208}, {3, 204}, {41, 230}, {35, 236}, {29, 210}, {72, 135}, {85, 154}, {31, 206}, {95, 142}, {93, 140}, {89, 136}, {52, 229}, {50, 227}, {72, 153}, {87, 134}, {20, 198}, {114, 160}, {48, 226}, {34, 240}, {23, 197}, {46, 253}, {120, 171}, {29, 201}, {116, 160}, {106, 190}, {47, 251}, {32, 244}, {73, 157}, {26, 207}, {127, 170}, {100, 177}, {36, 241}, {96, 182}, {8, 223}, {126, 169}, {92, 139}, {91, 140}, {90, 141}, {58, 237}, {82, 133}, {33, 249}, {54, 238}, {53, 237}, {66, 154}, {35, 250}, {113, 168}, {42, 243}, {39, 254}, {37, 255}, {112, 170}, {39, 253}, {82, 136}, {4, 223}, {104, 179}, {44, 247}, {23, 204}, {25, 197}, {105, 181}, {43, 247}, {68, 152}, {57, 228}, {104, 181}, {60, 225}, {45, 243}, {119, 169}, {19, 204}, {118, 169}, {45, 242}, {27, 251}, {121, 153}, {107, 139}, {52, 212}, {47, 207}, {62, 222}, {77, 173}, {81, 177}, {16, 241}, {127, 158}, {28, 253}, {18, 243}, {9, 235}, {124, 158}, {50, 208}, {36, 198}, {28, 254}, {18, 240}, {5, 230}, {49, 210}, {4, 224}, {123, 159}, {16, 244}, {6, 226}, {84, 176}, {5, 224}, {122, 159}, {51, 214}, {24, 253}, {51, 213}, {120, 158}, {113, 151}, {78, 168}, {46, 201}, {126, 153}, {109, 138}, {61, 218}, {17, 249}, {109, 133}, {103, 143}, {96, 136}, {79, 167}, {73, 160}, {78, 167}, {88, 177}, {14, 228}, {89, 179}, {21, 255}, {12, 231}, {115, 152}, {110, 133}, {91, 176}, {13, 230}, {74, 161}, {14, 226}, {114, 158}, {86, 186}, {49, 220}, {99, 142}, {88, 182}, {118, 152}, {103, 137}, {97, 143}, {11, 251}, {71, 183}, {98, 147}, {124, 141}, {102, 151}, {63, 205}, {41, 218}, {108, 159}, {94, 173}, {59, 200}, {64, 179}, {67, 176}, {20, 224}, {42, 222}, {15, 250}, {95, 170}, {38, 211}, {66, 183}, {108, 154}, {81, 166}, {122, 141}, {6, 254}, {24, 224}, {76, 180}, {77, 181}, {8, 241}, {101, 156}, {27, 226}, {10, 243}, {64, 185}, {3, 249}, {112, 138}, {30, 228}, {17, 235}, {28, 231}, {53, 206}, {67, 184}, {70, 189}, {87, 172}, {2, 254}, {115, 143}, {65, 189}, {69, 185}, {7, 250}, {97, 156}, {75, 182}, {83, 174}, {7, 249}, {123, 133}, {117, 139}, {111, 145}, {80, 174}, {19, 236}, {102, 153}, {76, 179}, {39, 256}, {59, 256}, {90, 256}, {93, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 159} under the group generated by the following permutations:

a: (10, 19)(12, 23)(18, 35)(21, 39)(25, 28)(34, 55)(37, 59)(54, 82)(57, 86)(68, 94)(72, 98)(81, 109)(84, 111)(95, 113)(99, 102)(100, 112)(129, 254)(130, 183)(132, 198)(133, 246)(135, 211)(136, 238)(137, 200)(138, 218)(142, 207)(144, 253)(145, 248)(146, 240)(147, 225)(151, 247)(152, 202)(153, 209)(157, 197)(162, 204)(164, 250)(166, 213)(168, 215)(170, 195)(171, 233)(172, 245)(173, 227)(175, 243)(176, 196)(177, 205)(185, 236)(186, 228)(189, 231)(255, 256)
b: (4, 9)(5, 11)(8, 17)(13, 27)(16, 33)(22, 40)(26, 43)(29, 48)(32, 53)(38, 60)(41, 63)(42, 64)(44, 47)(45, 69)(49, 75)(52, 80)(58, 67)(61, 88)(62, 89)(65, 92)(66, 93)(70, 73)(71, 90)(76, 97)(79, 108)(85, 91)(87, 96)(101, 104)(107, 122)(114, 125)(116, 119)(117, 124)(130, 256)(131, 193)(134, 182)(135, 225)(136, 245)(138, 205)(139, 141)(140, 154)(142, 247)(143, 220)(145, 196)(147, 211)(148, 155)(149, 184)(150, 241)(151, 207)(156, 179)(157, 231)(158, 234)(159, 194)(160, 192)(161, 201)(163, 249)(165, 206)(167, 214)(169, 199)(172, 238)(174, 229)(175, 236)(176, 248)(177, 218)(178, 191)(180, 208)(181, 232)(183, 255)(185, 243)(187, 224)(188, 226)(189, 197)(190, 216)(203, 217)(210, 252)(212, 219)(221, 242)(222, 239)(223, 235)(230, 251)(237, 244)
c: (2, 3)(4, 12, 9, 23)(5, 10, 11, 19)(6, 7)(8, 28, 17, 25)(13, 18, 27, 35)(14, 15)(16, 39, 33, 21)(22, 65)(24, 36)(26, 70)(29, 34, 48, 55)(30, 31)(32, 59, 53, 37)(38, 90)(40, 92)(41, 42)(43, 73)(44, 45)(46, 56)(47, 69)(49, 54, 75, 82)(50, 51)(52, 86, 80, 57)(58, 93)(60, 71)(61, 62)(63, 64)(66, 67)(68, 107, 94, 122)(72, 117, 98, 124)(74, 83)(76, 81, 97, 109)(77, 78)(79, 111, 108, 84)(85, 91)(88, 89)(95, 116, 113, 119)(99, 114, 102, 125)(100, 101, 112, 104)(103, 110)(105, 106)(115, 123)(118, 128)(120, 121)(126, 127)(129, 163, 254, 249)(130, 184, 183, 244)(131, 162, 193, 204)(132, 224, 198, 187)(133, 220, 246, 143)(134, 172, 252, 245)(135, 217, 211, 141)(136, 210, 238, 182)(137, 229, 200, 174)(138, 222, 218, 156)(139, 147, 203, 225)(140, 145, 219, 248)(142, 221, 207, 192)(144, 241, 253, 150)(146, 201, 240, 161)(148, 185, 251, 236)(149, 256, 237, 255)(151, 242, 247, 160)(152, 194, 202, 159)(153, 234, 209, 158)(154, 176, 212, 196)(155, 175, 230, 243)(157, 235, 197, 178)(164, 226, 250, 188)(165, 186, 206, 228)(166, 208, 213, 180)(167, 173, 214, 227)(168, 232, 215, 181)(169, 170, 199, 195)(171, 216, 233, 190)(177, 239, 205, 179)(189, 223, 231, 191)
d: (1, 2, 6, 14, 30, 50, 77, 105, 120, 127, 128, 123, 110, 83, 56, 36, 20, 24, 46, 74, 103, 115, 118, 126, 121, 106, 78, 51, 31, 15, 7, 3)(4, 25, 13, 37, 49, 84, 104, 72, 114, 113, 122, 81, 80, 34, 33, 10, 9, 28, 27, 59, 75, 111, 101, 98, 125, 95, 107, 109, 52, 55, 16, 19)(5, 21, 29, 57, 76, 68, 116, 102, 124, 100, 108, 54, 53, 18, 17, 12, 11, 39, 48, 86, 97, 94, 119, 99, 117, 112, 79, 82, 32, 35, 8, 23)(22, 73, 44, 90, 88, 85, 62, 60, 69, 26, 92, 41, 93, 96, 58, 42, 40, 70, 47, 71, 61, 91, 89, 38, 45, 43, 65, 63, 66, 87, 67, 64)(129, 188, 228, 180, 227, 181, 233, 158, 195, 159, 246, 174, 240, 150, 198, 187, 253, 161, 200, 143, 202, 169, 209, 190, 215, 167, 213, 165, 250, 163, 204, 131)(130, 252, 196, 239, 211, 242, 247, 217, 205, 212, 245, 244, 236, 223, 197, 230, 255, 210, 248, 222, 225, 221, 207, 203, 218, 219, 238, 237, 243, 235, 231, 251)(132, 224, 144, 201, 137, 220, 152, 199, 153, 216, 168, 214, 166, 206, 164, 249, 162, 193, 254, 226, 186, 208, 173, 232, 171, 234, 170, 194, 133, 229, 146, 241)(134, 176, 179, 135, 160, 151, 141, 177, 154, 172, 184, 185, 191, 157, 155, 256, 182, 145, 156, 147, 192, 142, 139, 138, 140, 136, 149, 175, 178, 189, 148, 183)
e: (1, 4, 20, 9)(2, 5, 24, 11)(3, 8, 36, 17)(6, 13, 46, 27)(7, 16, 56, 33)(10, 22)(12, 26)(14, 29, 74, 48)(15, 32, 83, 53)(18, 38)(19, 40)(21, 41)(23, 43)(25, 44)(28, 47)(30, 49, 103, 75)(31, 52, 110, 80)(34, 58)(35, 60)(37, 61)(39, 63)(42, 68)(45, 72)(50, 76, 115, 97)(51, 79, 123, 108)(54, 85)(55, 67)(57, 87)(59, 88)(62, 84)(64, 94)(65, 95)(66, 81)(69, 98)(70, 99)(71, 100)(73, 102)(77, 104, 118, 101)(78, 107, 128, 122)(82, 91)(86, 96)(89, 111)(90, 112)(92, 113)(93, 109)(105, 116, 126, 119)(106, 117, 127, 124)(114, 121, 125, 120)(129, 230, 144, 155)(130, 177)(131, 224, 187, 193)(132, 235, 204, 178)(133, 219, 213, 140)(134, 137, 252, 228)(135, 243)(136, 196)(138, 255)(139, 195, 203, 168)(141, 215, 217, 170)(142, 231)(143, 208, 180, 220)(145, 238)(146, 184, 250, 244)(147, 236)(148, 253, 251, 254)(149, 240, 237, 164)(150, 249, 163, 241)(151, 197)(152, 156, 227, 222)(153, 242, 233, 160)(154, 166, 212, 246)(157, 207)(158, 216, 190, 234)(159, 214, 167, 194)(161, 226, 188, 201)(162, 223, 198, 191)(165, 229, 174, 206)(169, 232, 181, 199)(171, 221, 209, 192)(172, 248)(173, 179, 202, 239)(175, 225)(176, 245)(182, 186, 210, 200)(183, 218)(185, 211)(189, 247)(205, 256)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 30 ]
256
-1 193 204 162 131
-2 254 193 129 131
-3 204 249 162 163
-4 178 223 224 131
-5 224 148 131 230
-6 188 254 226 129
-7 249 250 163 164
-8 178 223 163 241
-9 187 191 235 193
-10 198 243 162 185
-11 187 155 193 251
-12 198 231 157 162
-13 188 201 148 230
-14 188 226 228 186
-15 165 206 250 164
-16 244 149 163 241
-17 191 235 150 249
-18 243 185 240 164
-19 132 236 204 175
-20 132 187 198 224
-21 144 255 183 129
-22 211 135 223 191
-23 132 189 204 197
-24 187 253 144 224
-25 144 189 129 197
-26 223 191 207 142
-27 155 226 161 251
-28 231 253 254 157
-29 188 210 134 201
-30 180 228 186 208
-31 165 166 213 206
-32 165 244 149 229
-33 237 150 249 184
-34 172 238 240 164
-35 146 236 250 175
-36 132 198 150 241
-37 255 137 183 228
-38 211 135 149 237
-39 253 254 256 130
-40 178 147 235 225
-41 155 138 218 230
-42 243 156 222 175
-43 178 235 247 151
-44 155 247 151 230
-45 242 243 160 175
-46 253 144 201 161
-47 148 207 251 142
-48 182 226 161 252
-49 220 210 134 180
-50 180 227 173 208
-51 166 167 213 214
-52 165 212 140 229
-53 237 184 206 174
-54 166 246 172 238
-55 146 245 136 250
-56 146 150 240 241
-57 176 137 248 228
-58 145 149 237 248
-59 200 256 130 186
-60 244 147 225 184
-61 134 138 218 252
-62 156 222 245 172
-63 177 148 205 251
-64 179 236 239 185
-65 231 189 217 141
-66 154 212 183 130
-67 176 244 184 196
-68 135 225 227 152
-69 221 192 236 185
-70 231 221 189 192
-71 203 139 183 130
-72 233 135 225 153
-73 242 157 160 197
-74 200 201 137 161
-75 143 182 208 252
-76 220 222 179 180
-77 232 181 227 173
-78 167 168 214 215
-79 167 212 194 140
-80 154 206 174 219
-81 166 177 246 218
-82 133 245 136 213
-83 146 174 229 240
-84 176 248 227 152
-85 154 145 212 248
-86 145 200 196 186
-87 134 245 172 252
-88 177 210 182 205
-89 179 136 238 239
-90 255 256 217 141
-91 176 140 196 219
-92 157 203 139 197
-93 255 256 140 219
-94 211 147 202 173
-95 170 247 215 142
-96 210 136 182 238
-97 143 156 239 208
-98 209 211 147 171
-99 209 247 171 142
-100 177 168 195 218
-101 232 156 169 239
-102 233 151 207 153
-103 143 220 200 137
-104 199 222 179 181
-105 232 233 181 171
-106 168 190 215 216
-107 167 139 194 217
-108 154 159 214 219
-109 133 213 138 205
-110 133 246 174 229
-111 145 202 173 196
-112 170 138 215 205
-113 168 151 195 207
-114 221 158 160 216
-115 143 220 202 152
-116 199 221 181 160
-117 190 234 139 217
-118 199 169 202 152
-119 242 232 169 192
-120 233 234 158 171
-121 209 190 216 153
-122 159 203 214 141
-123 133 246 159 194
-124 158 203 216 141
-125 242 190 234 192
-126 209 199 169 153
-127 234 158 170 195
-128 159 170 194 195
-129 2 25 6 21
-130 66 59 71 39
-131 1 2 4 5
-132 23 36 19 20
-133 110 123 82 109
-134 49 61 29 87
-135 22 68 38 72
-136 55 89 82 96
-137 57 37 103 74
-138 112 61 41 109
-139 92 71 117 107
-140 79 91 93 52
-141 122 90 124 65
-142 99 47 26 95
-143 103 115 75 97
-144 24 46 25 21
-145 111 58 85 86
-146 55 56 35 83
-147 60 94 40 98
-148 13 47 5 63
-149 58 16 38 32
-150 33 56 36 17
-151 44 102 113 43
-152 68 115 84 118
-153 121 102 126 72
-154 66 80 85 108
-155 11 44 27 41
-156 101 62 42 97
-157 12 92 28 73
-158 124 114 127 120
-159 122 123 128 108
-160 45 114 116 73
-161 46 48 27 74
-162 1 12 3 10
-163 3 16 7 8
-164 34 15 7 18
-165 15 52 31 32
-166 81 51 31 54
-167 78 79 51 107
-168 78 100 113 106
-169 101 126 118 119
-170 112 127 95 128
-171 99 105 98 120
-172 34 62 54 87
-173 77 111 50 94
-174 110 80 83 53
-175 45 35 19 42
-176 67 57 91 84
-177 88 100 81 63
-178 4 40 8 43
-179 89 104 64 76
-180 49 50 30 76
-181 77 104 105 116
-182 88 48 96 75
-183 66 37 71 21
-184 33 67 60 53
-185 69 18 64 10
-186 14 59 30 86
-187 11 24 9 20
-188 13 14 6 29
-189 23 25 70 65
-190 121 125 106 117
-191 22 26 17 9
-192 69 70 125 119
-193 11 1 2 9
-194 79 123 128 107
-195 100 113 127 128
-196 67 111 91 86
-197 23 25 92 73
-198 12 36 20 10
-199 104 126 116 118
-200 59 103 74 86
-201 13 46 29 74
-202 111 115 94 118
-203 122 124 92 71
-204 1 23 3 19
-205 88 112 63 109
-206 80 15 31 53
-207 47 102 113 26
-208 50 30 75 97
-209 99 121 126 98
-210 88 49 29 96
-211 22 38 94 98
-212 66 79 52 85
-213 82 51 31 109
-214 78 122 51 108
-215 78 112 95 106
-216 121 124 114 106
-217 90 117 107 65
-218 100 81 61 41
-219 80 91 93 108
-220 103 49 115 76
-221 69 70 114 116
-222 104 62 42 76
-223 22 4 26 8
-224 24 4 5 20
-225 68 60 72 40
-226 14 48 27 6
-227 77 68 50 84
-228 57 14 37 30
-229 110 83 52 32
-230 44 13 5 41
-231 12 70 28 65
-232 77 101 105 119
-233 102 72 105 120
-234 125 127 117 120
-235 17 40 9 43
-236 35 69 19 64
-237 33 58 38 53
-238 34 89 96 54
-239 89 101 64 97
-240 34 56 83 18
-241 56 36 16 8
-242 45 125 73 119
-243 45 18 42 10
-244 67 16 60 32
-245 55 82 62 87
-246 110 123 81 54
-247 44 99 95 43
-248 57 58 84 85
-249 33 3 17 7
-250 55 35 15 7
-251 11 47 27 63
-252 48 61 75 87
-253 24 46 28 39
-254 2 6 28 39
-255 90 37 93 21
-256 90 59 93 39
0

**************