C4graphGraph forms for C4 [ 256, 33 ] = PL(Curtain_32(1,8,1,10,18),[4^32,8^16])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 33 ] = PL(Curtain_32(1,8,1,10,18),[4^32,8^16]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 139}, {128, 186}, {128, 194}, {128, 198}, {1, 129}, {117, 245}, {46, 174}, {30, 158}, {3, 131}, {82, 210}, {88, 216}, {22, 151}, {108, 237}, {101, 228}, {52, 181}, {28, 158}, {126, 252}, {103, 229}, {58, 184}, {49, 179}, {89, 219}, {12, 143}, {113, 242}, {16, 147}, {15, 140}, {76, 200}, {92, 216}, {4, 129}, {121, 252}, {106, 239}, {59, 190}, {67, 198}, {80, 213}, {5, 131}, {51, 181}, {26, 156}, {10, 140}, {76, 203}, {103, 224}, {9, 129}, {50, 186}, {62, 182}, {6, 143}, {117, 252}, {111, 230}, {104, 225}, {91, 210}, {77, 196}, {85, 220}, {25, 147}, {124, 246}, {112, 250}, {99, 233}, {8, 131}, {57, 178}, {70, 205}, {31, 147}, {55, 187}, {43, 166}, {73, 196}, {2, 140}, {47, 160}, {109, 226}, {88, 215}, {7, 151}, {115, 227}, {61, 173}, {27, 139}, {23, 135}, {85, 197}, {87, 199}, {24, 137}, {122, 235}, {120, 233}, {14, 156}, {100, 246}, {95, 205}, {29, 143}, {17, 131}, {73, 219}, {18, 129}, {119, 228}, {51, 160}, {74, 217}, {83, 192}, {33, 181}, {105, 253}, {45, 185}, {78, 218}, {86, 194}, {11, 158}, {94, 203}, {93, 200}, {41, 188}, {39, 178}, {35, 182}, {34, 183}, {19, 133}, {20, 130}, {63, 169}, {69, 211}, {42, 189}, {110, 249}, {108, 251}, {80, 199}, {81, 198}, {38, 190}, {102, 254}, {91, 195}, {60, 164}, {40, 177}, {127, 230}, {13, 151}, {36, 190}, {21, 143}, {89, 195}, {32, 187}, {47, 180}, {44, 183}, {54, 170}, {37, 184}, {123, 230}, {81, 204}, {87, 202}, {86, 200}, {125, 227}, {119, 233}, {116, 234}, {115, 237}, {98, 252}, {53, 170}, {118, 233}, {106, 245}, {1, 161}, {125, 221}, {124, 220}, {58, 154}, {50, 146}, {37, 133}, {21, 181}, {19, 179}, {13, 173}, {4, 164}, {22, 183}, {49, 144}, {75, 234}, {3, 161}, {121, 219}, {102, 196}, {62, 156}, {2, 161}, {96, 195}, {45, 142}, {63, 156}, {24, 188}, {54, 146}, {38, 130}, {35, 135}, {69, 225}, {84, 240}, {17, 180}, {65, 228}, {71, 226}, {23, 177}, {122, 220}, {92, 250}, {59, 157}, {42, 140}, {5, 162}, {114, 213}, {61, 154}, {56, 159}, {6, 161}, {71, 224}, {72, 239}, {10, 162}, {97, 201}, {44, 132}, {12, 164}, {68, 236}, {7, 174}, {105, 192}, {93, 244}, {48, 153}, {29, 180}, {65, 232}, {57, 147}, {127, 213}, {99, 201}, {33, 138}, {31, 179}, {112, 220}, {36, 137}, {107, 198}, {43, 133}, {101, 203}, {55, 153}, {11, 164}, {120, 215}, {110, 193}, {109, 194}, {41, 134}, {20, 187}, {16, 191}, {78, 225}, {9, 185}, {39, 151}, {98, 211}, {114, 195}, {53, 135}, {64, 242}, {84, 230}, {46, 157}, {102, 213}, {96, 211}, {83, 231}, {116, 192}, {28, 169}, {95, 234}, {94, 235}, {15, 185}, {123, 205}, {113, 199}, {107, 221}, {60, 138}, {67, 244}, {90, 237}, {73, 254}, {7, 191}, {34, 154}, {26, 162}, {66, 250}, {72, 240}, {8, 177}, {97, 216}, {52, 141}, {40, 145}, {27, 162}, {64, 249}, {79, 245}, {104, 210}, {70, 253}, {74, 246}, {100, 216}, {82, 238}, {2, 191}, {111, 210}, {66, 255}, {68, 249}, {1, 191}, {126, 192}, {118, 200}, {16, 174}, {75, 245}, {79, 241}, {14, 177}, {90, 229}, {32, 159}, {25, 166}, {77, 242}, {23, 215}, {96, 160}, {11, 202}, {49, 240}, {15, 206}, {68, 133}, {69, 132}, {22, 212}, {98, 160}, {97, 163}, {52, 246}, {23, 212}, {111, 172}, {96, 163}, {86, 149}, {47, 235}, {66, 134}, {78, 138}, {53, 240}, {108, 169}, {59, 253}, {95, 153}, {75, 141}, {80, 150}, {9, 206}, {119, 176}, {60, 251}, {47, 232}, {43, 236}, {32, 231}, {25, 222}, {74, 141}, {85, 146}, {67, 139}, {120, 176}, {99, 171}, {93, 149}, {70, 142}, {88, 144}, {31, 214}, {121, 176}, {110, 167}, {98, 171}, {42, 227}, {81, 152}, {82, 155}, {6, 204}, {103, 173}, {101, 175}, {91, 145}, {87, 157}, {27, 208}, {64, 139}, {26, 214}, {100, 168}, {46, 226}, {40, 228}, {107, 166}, {113, 188}, {16, 222}, {126, 176}, {3, 204}, {48, 255}, {39, 232}, {33, 238}, {14, 222}, {104, 184}, {36, 244}, {31, 207}, {65, 145}, {89, 137}, {12, 221}, {57, 232}, {63, 237}, {41, 250}, {84, 135}, {21, 193}, {115, 167}, {105, 189}, {92, 136}, {10, 223}, {50, 231}, {38, 243}, {77, 152}, {24, 206}, {28, 202}, {6, 209}, {109, 186}, {13, 218}, {51, 235}, {106, 178}, {72, 144}, {90, 130}, {124, 165}, {10, 208}, {127, 165}, {114, 168}, {94, 132}, {71, 157}, {76, 150}, {38, 253}, {125, 166}, {116, 175}, {73, 146}, {79, 148}, {83, 136}, {19, 207}, {112, 172}, {43, 247}, {39, 251}, {29, 193}, {2, 223}, {118, 171}, {44, 241}, {37, 248}, {24, 197}, {13, 208}, {12, 209}, {7, 218}, {42, 244}, {123, 165}, {117, 171}, {49, 238}, {122, 165}, {53, 234}, {62, 225}, {30, 254}, {118, 150}, {45, 205}, {62, 222}, {30, 255}, {105, 136}, {60, 221}, {36, 197}, {75, 170}, {82, 179}, {46, 204}, {125, 159}, {123, 153}, {58, 217}, {93, 190}, {68, 167}, {8, 236}, {5, 224}, {103, 130}, {28, 249}, {76, 170}, {108, 138}, {20, 243}, {114, 149}, {56, 223}, {41, 206}, {120, 144}, {124, 148}, {27, 242}, {113, 152}, {50, 219}, {63, 214}, {64, 169}, {80, 185}, {83, 186}, {45, 199}, {127, 149}, {71, 173}, {19, 248}, {58, 209}, {87, 188}, {9, 229}, {119, 155}, {115, 159}, {18, 254}, {15, 227}, {18, 255}, {99, 142}, {22, 251}, {61, 208}, {86, 187}, {25, 247}, {57, 214}, {97, 142}, {88, 168}, {121, 137}, {102, 150}, {100, 148}, {95, 175}, {59, 202}, {94, 175}, {89, 168}, {1, 243}, {116, 134}, {29, 239}, {4, 247}, {109, 158}, {107, 152}, {104, 155}, {54, 197}, {34, 209}, {20, 231}, {35, 215}, {110, 154}, {55, 194}, {65, 180}, {34, 212}, {4, 243}, {18, 229}, {78, 182}, {126, 134}, {117, 141}, {112, 136}, {91, 163}, {79, 183}, {84, 172}, {8, 241}, {48, 201}, {85, 172}, {26, 224}, {35, 217}, {72, 178}, {3, 248}, {52, 207}, {33, 218}, {21, 238}, {70, 189}, {11, 247}, {61, 193}, {56, 196}, {51, 207}, {40, 212}, {37, 217}, {30, 226}, {74, 182}, {5, 248}, {54, 203}, {17, 236}, {69, 184}, {90, 167}, {17, 239}, {122, 132}, {111, 145}, {106, 148}, {101, 155}, {55, 201}, {67, 189}, {14, 241}, {92, 163}, {44, 211}, {32, 223}, {81, 174}, {48, 256}, {56, 256}, {66, 256}, {77, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 139} under the group generated by the following permutations:

a: (1, 3)(2, 6)(4, 5)(7, 81)(8, 18)(9, 17)(10, 12)(11, 26)(13, 107)(14, 30)(15, 29)(16, 46)(19, 38)(20, 37)(21, 42)(22, 77)(23, 73)(24, 72)(25, 71)(27, 60)(28, 63)(31, 59)(32, 58)(33, 67)(34, 56)(35, 50)(36, 49)(39, 113)(40, 102)(41, 106)(43, 103)(44, 48)(45, 47)(51, 70)(52, 105)(53, 121)(54, 120)(55, 69)(57, 87)(61, 125)(62, 109)(64, 108)(65, 80)(66, 79)(68, 90)(74, 83)(75, 126)(76, 119)(78, 128)(82, 93)(84, 89)(85, 88)(86, 104)(91, 127)(92, 124)(94, 99)(95, 98)(96, 123)(97, 122)(100, 112)(101, 118)(110, 115)(111, 114)(116, 117)(129, 131)(130, 133)(132, 201)(134, 245)(135, 219)(136, 246)(137, 240)(138, 139)(140, 143)(141, 192)(142, 235)(144, 197)(145, 213)(146, 215)(147, 157)(148, 250)(149, 210)(150, 228)(151, 152)(153, 211)(154, 159)(155, 200)(156, 158)(160, 205)(162, 164)(163, 165)(166, 173)(168, 172)(170, 176)(171, 175)(177, 254)(178, 188)(179, 190)(180, 185)(181, 189)(182, 186)(183, 256)(184, 187)(191, 204)(193, 227)(194, 225)(195, 230)(196, 212)(198, 218)(199, 232)(202, 214)(203, 233)(206, 239)(207, 253)(208, 221)(209, 223)(216, 220)(217, 231)(222, 226)(224, 247)(229, 236)(234, 252)(237, 249)(238, 244)(241, 255)(242, 251)(243, 248)
b: (8, 19)(14, 31)(17, 37)(21, 34)(22, 33)(23, 49)(29, 58)(35, 72)(39, 78)(40, 82)(44, 51)(47, 69)(52, 79)(57, 62)(65, 104)(74, 106)(131, 248)(132, 235)(133, 236)(135, 240)(138, 251)(141, 245)(143, 209)(144, 215)(145, 210)(147, 222)(148, 246)(151, 218)(154, 193)(155, 228)(156, 214)(160, 211)(177, 179)(178, 182)(180, 184)(181, 183)(207, 241)(212, 238)(217, 239)(225, 232)
c: (2, 4)(3, 18)(5, 30)(6, 9)(7, 38)(8, 48, 19, 73)(10, 11)(12, 15)(13, 59)(14, 55, 31, 50)(16, 20)(17, 66, 37, 102)(21, 24, 34, 45)(22, 70, 33, 36)(23, 123, 49, 85)(25, 32)(26, 109)(27, 28)(29, 41, 58, 80)(35, 127, 72, 112)(39, 105, 78, 93)(40, 95, 82, 54)(42, 60)(43, 56)(44, 99, 51, 121)(46, 103)(47, 126, 69, 118)(52, 89, 79, 97)(53, 111)(57, 83, 62, 86)(61, 87)(63, 128)(65, 116, 104, 76)(67, 108)(68, 77)(74, 114, 106, 92)(75, 91)(81, 90)(88, 124)(94, 119)(96, 117)(107, 115)(110, 113)(120, 122)(129, 161)(130, 174)(131, 255, 248, 254)(132, 233, 235, 176)(133, 196, 236, 256)(134, 184, 150, 180)(135, 230, 240, 172)(136, 182, 149, 178)(137, 183, 142, 181)(138, 244, 251, 189)(139, 169)(140, 164)(141, 195, 245, 163)(143, 206, 209, 185)(144, 220, 215, 165)(145, 234, 210, 170)(146, 177, 153, 179)(147, 231, 222, 187)(148, 216, 246, 168)(151, 253, 218, 190)(152, 167)(154, 199, 193, 188)(155, 203, 228, 175)(156, 194, 214, 186)(157, 173)(158, 162)(159, 166)(160, 252, 211, 171)(191, 243)(192, 225, 200, 232)(197, 212, 205, 238)(198, 237)(201, 207, 219, 241)(202, 208)(204, 229)(213, 239, 250, 217)(221, 227)(223, 247)(224, 226)(242, 249)
d: (3, 7)(5, 13)(6, 16)(8, 33)(12, 25)(14, 21)(17, 78)(19, 22)(23, 51)(24, 45)(26, 61)(29, 62)(31, 34)(35, 47)(36, 70)(37, 39)(40, 52)(41, 80)(43, 60)(44, 49)(48, 73)(50, 55)(53, 96)(54, 97)(57, 58)(63, 110)(65, 74)(66, 102)(68, 108)(69, 72)(75, 91)(76, 92)(79, 82)(83, 86)(84, 98)(85, 99)(88, 94)(89, 95)(93, 105)(100, 101)(104, 106)(111, 117)(112, 118)(114, 116)(119, 124)(120, 122)(121, 123)(126, 127)(131, 218)(132, 144)(133, 251)(134, 213)(135, 160)(136, 200)(137, 205)(138, 236)(141, 145)(142, 197)(143, 222)(146, 201)(147, 209)(148, 155)(149, 192)(150, 250)(151, 248)(153, 219)(154, 214)(156, 193)(161, 191)(162, 208)(163, 170)(164, 247)(165, 176)(166, 221)(167, 237)(168, 175)(169, 249)(171, 172)(173, 224)(174, 204)(177, 181)(178, 184)(179, 183)(180, 182)(185, 206)(186, 194)(187, 231)(188, 199)(189, 244)(190, 253)(195, 234)(196, 256)(203, 216)(207, 212)(210, 245)(211, 240)(215, 235)(217, 232)(220, 233)(225, 239)(228, 246)(230, 252)(238, 241)(254, 255)
e: (24, 45)(36, 70)(41, 80)(48, 73)(50, 55)(54, 95)(66, 102)(76, 116)(83, 86)(85, 123)(89, 97)(92, 114)(93, 105)(99, 121)(112, 127)(118, 126)(134, 150)(136, 149)(137, 142)(146, 153)(163, 195)(165, 220)(168, 216)(170, 234)(171, 252)(172, 230)(175, 203)(176, 233)(185, 206)(186, 194)(187, 231)(188, 199)(189, 244)(190, 253)(192, 200)(196, 256)(197, 205)(201, 219)(213, 250)(254, 255)
f: (3, 7)(5, 13)(6, 16)(8, 22)(12, 25)(14, 34)(17, 39)(19, 33)(21, 31)(26, 61)(29, 57)(37, 78)(43, 60)(58, 62)(63, 110)(68, 108)(131, 151)(133, 138)(143, 147)(154, 156)(161, 191)(162, 208)(164, 247)(166, 221)(167, 237)(169, 249)(173, 224)(174, 204)(177, 212)(178, 239)(179, 238)(180, 232)(181, 207)(182, 217)(183, 241)(184, 225)(193, 214)(209, 222)(218, 248)(236, 251)
g: (3, 7)(5, 13)(6, 16)(8, 33)(12, 25)(14, 21)(17, 78)(19, 22)(23, 51)(24, 45)(26, 61)(29, 62)(31, 34)(35, 47)(36, 70)(37, 39)(40, 52)(41, 80)(43, 60)(44, 49)(48, 73)(50, 55)(53, 94)(54, 95)(57, 58)(63, 110)(65, 74)(66, 102)(68, 108)(69, 72)(75, 101)(76, 116)(79, 82)(83, 86)(84, 122)(85, 123)(88, 96)(89, 97)(91, 100)(92, 114)(93, 105)(98, 120)(99, 121)(104, 106)(111, 124)(112, 127)(117, 119)(118, 126)(131, 218)(132, 240)(133, 251)(134, 150)(135, 235)(136, 149)(137, 142)(138, 236)(141, 228)(143, 222)(144, 211)(145, 246)(146, 153)(147, 209)(148, 210)(151, 248)(154, 214)(155, 245)(156, 193)(160, 215)(161, 191)(162, 208)(163, 168)(164, 247)(165, 172)(166, 221)(167, 237)(169, 249)(170, 175)(171, 176)(173, 224)(174, 204)(177, 181)(178, 184)(179, 183)(180, 182)(185, 206)(186, 194)(187, 231)(188, 199)(189, 244)(190, 253)(192, 200)(195, 216)(196, 256)(197, 205)(201, 219)(203, 234)(207, 212)(213, 250)(217, 232)(220, 230)(225, 239)(233, 252)(238, 241)(254, 255)
h: (1, 2)(3, 6)(4, 10)(5, 12)(7, 16)(8, 21)(9, 15)(11, 27)(13, 25)(14, 33)(17, 29)(18, 42)(19, 34)(20, 32)(22, 31)(23, 52)(24, 80)(26, 60)(28, 64)(30, 67)(35, 74)(36, 102)(37, 58)(38, 56)(39, 57)(40, 51)(41, 45)(43, 61)(44, 82)(46, 81)(47, 65)(48, 105)(49, 79)(50, 86)(53, 75)(54, 76)(55, 83)(59, 77)(62, 78)(63, 108)(66, 70)(68, 110)(69, 104)(71, 107)(72, 106)(73, 93)(84, 117)(85, 118)(87, 113)(88, 100)(89, 114)(90, 115)(91, 96)(92, 97)(94, 101)(95, 116)(98, 111)(99, 112)(103, 125)(109, 128)(119, 122)(120, 124)(121, 127)(123, 126)(129, 140)(130, 159)(131, 143)(132, 155)(133, 154)(134, 205)(135, 141)(136, 201)(137, 213)(138, 156)(139, 158)(142, 250)(144, 148)(145, 160)(146, 200)(147, 151)(149, 219)(150, 197)(152, 157)(153, 192)(162, 164)(165, 176)(166, 173)(171, 172)(177, 181)(179, 183)(185, 206)(186, 194)(187, 231)(188, 199)(189, 255)(190, 196)(193, 236)(198, 226)(202, 242)(207, 212)(208, 247)(209, 248)(210, 211)(214, 251)(215, 246)(218, 222)(220, 233)(221, 224)(223, 243)(227, 229)(228, 235)(230, 252)(238, 241)(240, 245)(244, 254)(253, 256)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 33 ]
256
-1 243 191 161 129
-2 223 191 161 140
-3 204 248 161 131
-4 243 247 129 164
-5 224 248 162 131
-6 143 209 204 161
-7 191 151 174 218
-8 177 236 131 241
-9 129 206 185 229
-10 223 140 162 208
-11 158 202 247 164
-12 143 209 221 164
-13 151 173 218 208
-14 177 156 222 241
-15 227 140 206 185
-16 222 147 191 174
-17 180 236 239 131
-18 254 255 129 229
-19 133 179 248 207
-20 187 231 243 130
-21 143 181 193 238
-22 212 183 151 251
-23 177 135 212 215
-24 188 137 206 197
-25 166 222 147 247
-26 156 224 214 162
-27 242 139 162 208
-28 158 169 202 249
-29 143 180 193 239
-30 254 255 158 226
-31 179 147 214 207
-32 187 231 223 159
-33 181 138 238 218
-34 154 209 212 183
-35 135 182 215 217
-36 244 190 137 197
-37 133 248 184 217
-38 253 243 190 130
-39 232 178 151 251
-40 177 145 212 228
-41 188 134 206 250
-42 189 244 227 140
-43 133 166 236 247
-44 132 211 183 241
-45 199 205 185 142
-46 157 204 226 174
-47 232 180 235 160
-48 255 201 256 153
-49 144 179 238 240
-50 231 146 186 219
-51 235 181 160 207
-52 246 181 141 207
-53 135 234 170 240
-54 146 170 203 197
-55 187 201 194 153
-56 223 256 159 196
-57 232 178 147 214
-58 154 209 184 217
-59 253 157 190 202
-60 221 138 251 164
-61 154 193 173 208
-62 156 222 225 182
-63 156 169 214 237
-64 242 169 139 249
-65 232 145 180 228
-66 134 255 256 250
-67 198 189 244 139
-68 133 167 236 249
-69 132 211 225 184
-70 253 189 205 142
-71 157 224 226 173
-72 144 178 239 240
-73 254 146 196 219
-74 246 182 217 141
-75 234 245 170 141
-76 200 170 203 150
-77 242 256 152 196
-78 225 138 182 218
-79 245 148 183 241
-80 199 213 150 185
-81 198 204 152 174
-82 155 210 179 238
-83 231 136 192 186
-84 135 172 240 230
-85 220 146 172 197
-86 187 200 149 194
-87 188 199 157 202
-88 144 168 215 216
-89 168 137 195 219
-90 167 237 130 229
-91 210 145 195 163
-92 136 216 250 163
-93 200 244 190 149
-94 132 235 203 175
-95 234 205 153 175
-96 211 160 195 163
-97 201 216 163 142
-98 211 160 171 252
-99 233 201 171 142
-100 168 246 148 216
-101 155 203 228 175
-102 254 213 150 196
-103 224 173 130 229
-104 155 210 225 184
-105 253 189 136 192
-106 178 245 148 239
-107 198 166 221 152
-108 169 138 237 251
-109 158 226 194 186
-110 154 167 193 249
-111 210 145 172 230
-112 220 136 172 250
-113 242 188 199 152
-114 168 213 149 195
-115 167 159 237 227
-116 134 234 192 175
-117 245 171 141 252
-118 200 233 171 150
-119 176 155 233 228
-120 176 144 233 215
-121 176 137 219 252
-122 132 165 220 235
-123 165 205 153 230
-124 165 220 246 148
-125 166 221 159 227
-126 176 134 192 252
-127 165 213 149 230
-128 198 139 194 186
-129 1 4 18 9
-130 90 103 38 20
-131 3 5 17 8
-132 44 122 69 94
-133 68 37 19 43
-134 66 126 116 41
-135 23 35 84 53
-136 112 92 83 105
-137 121 89 24 36
-138 33 78 60 108
-139 67 27 128 64
-140 2 15 42 10
-141 117 52 74 75
-142 99 45 70 97
-143 12 6 29 21
-144 88 49 72 120
-145 111 91 40 65
-146 50 73 85 54
-147 57 25 16 31
-148 100 79 124 106
-149 114 93 127 86
-150 80 102 118 76
-151 22 13 39 7
-152 77 113 81 107
-153 55 123 48 95
-154 110 34 58 61
-155 101 82 104 119
-156 14 26 62 63
-157 46 59 71 87
-158 11 28 30 109
-159 56 125 115 32
-160 47 51 96 98
-161 1 2 3 6
-162 26 5 27 10
-163 91 92 96 97
-164 11 12 4 60
-165 122 123 124 127
-166 25 125 107 43
-167 110 68 90 115
-168 88 89 100 114
-169 28 63 64 108
-170 53 75 54 76
-171 99 117 118 98
-172 111 112 84 85
-173 13 103 71 61
-174 46 81 16 7
-175 101 94 116 95
-176 121 126 119 120
-177 23 14 40 8
-178 57 39 72 106
-179 49 82 19 31
-180 47 17 29 65
-181 33 51 52 21
-182 78 35 62 74
-183 22 44 34 79
-184 58 69 37 104
-185 45 80 15 9
-186 50 83 128 109
-187 55 20 86 32
-188 24 113 41 87
-189 67 70 105 42
-190 36 59 38 93
-191 1 2 16 7
-192 126 83 105 116
-193 110 61 29 21
-194 55 128 86 109
-195 89 91 114 96
-196 77 56 102 73
-197 24 36 85 54
-198 67 81 128 107
-199 45 80 113 87
-200 93 118 86 76
-201 55 99 48 97
-202 11 59 28 87
-203 101 94 54 76
-204 46 3 81 6
-205 45 123 70 95
-206 24 15 41 9
-207 51 19 52 31
-208 13 27 61 10
-209 12 34 58 6
-210 111 91 82 104
-211 44 69 96 98
-212 22 23 34 40
-213 80 102 114 127
-214 57 26 63 31
-215 88 23 35 120
-216 88 100 92 97
-217 35 58 37 74
-218 33 78 13 7
-219 121 89 50 73
-220 122 112 124 85
-221 12 125 60 107
-222 14 25 16 62
-223 56 2 10 32
-224 26 103 5 71
-225 78 69 104 62
-226 46 71 30 109
-227 15 125 115 42
-228 101 40 119 65
-229 90 103 18 9
-230 111 123 127 84
-231 50 83 20 32
-232 57 47 39 65
-233 99 118 119 120
-234 116 95 53 75
-235 122 47 94 51
-236 68 17 8 43
-237 90 115 63 108
-238 33 49 82 21
-239 17 72 29 106
-240 49 72 84 53
-241 44 79 14 8
-242 77 113 27 64
-243 1 4 38 20
-244 67 36 93 42
-245 79 106 117 75
-246 100 124 52 74
-247 11 25 4 43
-248 3 37 5 19
-249 110 68 28 64
-250 66 112 92 41
-251 22 60 39 108
-252 121 126 117 98
-253 59 70 38 105
-254 102 18 73 30
-255 66 48 18 30
-256 66 77 56 48
0

**************