C4graphGraph forms for C4 [ 256, 37 ] = PL(Curtain_32(1,16,10,17,26),[4^32,8^16])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 37 ] = PL(Curtain_32(1,16,10,17,26),[4^32,8^16]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 132}, {128, 147}, {128, 195}, {128, 209}, {1, 129}, {124, 252}, {123, 251}, {116, 244}, {109, 237}, {56, 184}, {3, 131}, {72, 200}, {28, 157}, {43, 170}, {39, 166}, {29, 156}, {79, 206}, {10, 136}, {115, 241}, {90, 216}, {31, 157}, {81, 211}, {12, 143}, {127, 252}, {121, 250}, {5, 129}, {7, 131}, {64, 196}, {13, 136}, {38, 163}, {47, 169}, {60, 186}, {4, 131}, {37, 162}, {53, 189}, {65, 201}, {82, 218}, {11, 130}, {125, 244}, {107, 226}, {58, 179}, {65, 203}, {74, 192}, {21, 158}, {57, 178}, {54, 189}, {35, 168}, {76, 199}, {17, 157}, {46, 162}, {2, 143}, {110, 227}, {102, 235}, {100, 233}, {83, 222}, {18, 156}, {98, 236}, {59, 181}, {48, 190}, {20, 154}, {97, 238}, {101, 234}, {2, 146}, {105, 249}, {52, 164}, {10, 154}, {5, 149}, {3, 146}, {119, 230}, {100, 245}, {45, 188}, {43, 186}, {16, 129}, {4, 149}, {67, 210}, {70, 215}, {17, 131}, {57, 171}, {56, 170}, {1, 146}, {117, 230}, {54, 165}, {53, 166}, {35, 176}, {83, 192}, {27, 143}, {119, 227}, {101, 241}, {28, 136}, {84, 192}, {48, 165}, {124, 233}, {120, 237}, {94, 203}, {23, 129}, {99, 245}, {58, 172}, {46, 184}, {31, 137}, {47, 184}, {122, 237}, {106, 253}, {98, 245}, {92, 196}, {96, 248}, {12, 149}, {93, 196}, {39, 190}, {29, 132}, {104, 242}, {112, 234}, {111, 245}, {86, 205}, {117, 238}, {104, 243}, {33, 189}, {59, 167}, {7, 154}, {90, 199}, {20, 137}, {70, 219}, {18, 140}, {109, 243}, {38, 184}, {69, 219}, {71, 217}, {13, 146}, {37, 186}, {21, 138}, {60, 163}, {63, 159}, {126, 222}, {89, 249}, {44, 141}, {121, 216}, {112, 209}, {93, 252}, {73, 232}, {88, 249}, {78, 236}, {92, 254}, {26, 185}, {125, 222}, {123, 216}, {114, 209}, {45, 142}, {33, 130}, {62, 157}, {64, 227}, {85, 246}, {6, 162}, {118, 210}, {102, 194}, {95, 251}, {50, 150}, {40, 140}, {14, 170}, {66, 230}, {86, 242}, {30, 187}, {51, 150}, {81, 244}, {61, 155}, {116, 210}, {103, 193}, {27, 188}, {99, 196}, {95, 248}, {19, 187}, {113, 217}, {55, 158}, {73, 224}, {77, 228}, {24, 178}, {49, 155}, {32, 138}, {69, 239}, {9, 162}, {25, 178}, {22, 189}, {75, 224}, {84, 255}, {16, 188}, {94, 242}, {42, 134}, {36, 136}, {34, 143}, {111, 194}, {87, 250}, {15, 161}, {89, 247}, {41, 135}, {71, 233}, {8, 167}, {87, 248}, {24, 168}, {115, 195}, {108, 220}, {107, 219}, {44, 156}, {88, 232}, {14, 191}, {122, 203}, {36, 149}, {22, 167}, {19, 161}, {92, 238}, {30, 172}, {78, 252}, {82, 224}, {25, 170}, {118, 197}, {113, 194}, {105, 218}, {41, 154}, {40, 155}, {42, 158}, {110, 218}, {108, 216}, {106, 222}, {68, 240}, {76, 248}, {11, 190}, {120, 205}, {6, 176}, {103, 209}, {91, 237}, {26, 172}, {15, 185}, {8, 190}, {85, 226}, {6, 191}, {51, 138}, {61, 132}, {62, 135}, {63, 134}, {68, 253}, {72, 241}, {74, 240}, {114, 200}, {9, 178}, {126, 197}, {97, 218}, {50, 137}, {66, 249}, {79, 244}, {49, 141}, {96, 220}, {55, 139}, {75, 247}, {80, 236}, {2, 191}, {127, 194}, {1, 191}, {14, 176}, {64, 254}, {67, 253}, {80, 238}, {32, 159}, {91, 228}, {77, 242}, {19, 211}, {116, 180}, {109, 173}, {103, 167}, {40, 232}, {31, 223}, {69, 133}, {13, 204}, {114, 179}, {55, 246}, {45, 236}, {43, 234}, {15, 206}, {80, 145}, {81, 144}, {108, 174}, {118, 180}, {22, 213}, {99, 160}, {32, 228}, {117, 177}, {113, 181}, {28, 217}, {104, 173}, {39, 226}, {66, 135}, {67, 134}, {82, 148}, {119, 177}, {94, 152}, {83, 148}, {97, 166}, {95, 152}, {99, 171}, {25, 208}, {98, 171}, {52, 253}, {59, 241}, {102, 172}, {72, 130}, {81, 155}, {85, 159}, {48, 251}, {110, 165}, {52, 255}, {63, 243}, {125, 177}, {11, 198}, {92, 145}, {54, 251}, {40, 229}, {30, 211}, {29, 208}, {8, 198}, {96, 174}, {95, 145}, {94, 144}, {45, 227}, {24, 214}, {64, 142}, {86, 152}, {53, 250}, {126, 177}, {87, 152}, {5, 213}, {113, 161}, {58, 235}, {30, 204}, {119, 165}, {56, 234}, {50, 224}, {48, 226}, {4, 215}, {117, 166}, {102, 181}, {58, 233}, {21, 198}, {20, 199}, {10, 217}, {79, 156}, {1, 213}, {103, 179}, {50, 230}, {26, 206}, {66, 150}, {3, 214}, {97, 180}, {35, 246}, {28, 201}, {61, 232}, {67, 150}, {2, 212}, {96, 182}, {26, 204}, {10, 221}, {126, 169}, {116, 163}, {12, 212}, {55, 239}, {31, 199}, {17, 201}, {16, 200}, {22, 207}, {54, 239}, {42, 243}, {83, 138}, {87, 142}, {7, 221}, {110, 180}, {53, 239}, {27, 193}, {13, 214}, {109, 182}, {108, 183}, {69, 158}, {82, 137}, {86, 141}, {34, 254}, {8, 213}, {39, 250}, {34, 255}, {14, 208}, {125, 163}, {20, 202}, {85, 139}, {11, 212}, {118, 169}, {104, 183}, {23, 200}, {79, 144}, {16, 240}, {121, 153}, {68, 164}, {43, 202}, {120, 153}, {51, 210}, {62, 223}, {88, 185}, {44, 206}, {123, 153}, {89, 187}, {57, 219}, {49, 211}, {62, 220}, {4, 231}, {122, 153}, {112, 147}, {41, 202}, {34, 193}, {6, 229}, {76, 175}, {3, 231}, {115, 151}, {111, 139}, {47, 203}, {5, 225}, {68, 160}, {18, 247}, {75, 174}, {37, 195}, {71, 161}, {78, 168}, {56, 223}, {73, 174}, {74, 173}, {9, 225}, {36, 204}, {23, 255}, {15, 231}, {65, 169}, {23, 254}, {101, 140}, {44, 197}, {77, 164}, {29, 247}, {123, 145}, {122, 144}, {74, 160}, {27, 240}, {124, 151}, {38, 205}, {7, 235}, {127, 147}, {106, 134}, {42, 198}, {9, 229}, {80, 188}, {12, 225}, {91, 182}, {90, 183}, {46, 195}, {61, 208}, {70, 171}, {24, 246}, {107, 133}, {105, 135}, {33, 207}, {32, 207}, {100, 139}, {57, 214}, {37, 202}, {63, 207}, {114, 130}, {73, 185}, {75, 187}, {21, 228}, {46, 223}, {60, 205}, {47, 221}, {101, 151}, {36, 215}, {100, 151}, {51, 192}, {19, 231}, {107, 159}, {49, 197}, {35, 215}, {71, 179}, {33, 212}, {120, 141}, {93, 168}, {90, 175}, {41, 220}, {60, 201}, {70, 176}, {89, 175}, {18, 229}, {121, 142}, {115, 132}, {88, 175}, {25, 225}, {84, 173}, {124, 133}, {17, 235}, {127, 133}, {59, 193}, {76, 182}, {77, 183}, {38, 221}, {65, 186}, {111, 147}, {112, 140}, {72, 181}, {105, 148}, {93, 160}, {106, 148}, {91, 164}, {52, 256}, {78, 256}, {84, 256}, {98, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 132} under the group generated by the following permutations:

a: (3, 13)(4, 36)(7, 10)(15, 26)(17, 28)(19, 30)(58, 71)(102, 113)(131, 136)(161, 172)(204, 231)(217, 235)
b: (3, 13)(4, 36)(6, 14)(7, 26)(9, 25)(10, 15)(17, 30)(18, 43)(19, 28)(20, 44)(29, 37)(31, 49)(38, 73)(39, 48)(40, 56)(41, 79)(46, 61)(47, 88)(50, 86)(51, 77)(52, 84)(53, 54)(60, 75)(62, 81)(65, 89)(66, 94)(67, 104)(68, 74)(76, 126)(82, 120)(83, 91)(87, 119)(90, 118)(95, 117)(96, 125)(97, 123)(105, 122)(106, 109)(108, 116)(110, 121)(131, 204)(132, 195)(134, 243)(135, 144)(136, 231)(137, 141)(138, 228)(140, 234)(142, 227)(145, 238)(148, 237)(150, 242)(152, 230)(153, 218)(154, 206)(155, 223)(156, 202)(157, 211)(161, 217)(162, 208)(163, 174)(164, 192)(165, 250)(166, 251)(169, 175)(170, 229)(172, 235)(173, 253)(177, 248)(180, 216)(182, 222)(183, 210)(184, 232)(185, 221)(186, 247)(187, 201)(197, 199)(203, 249)(205, 224)(220, 244)
c: (15, 19)(18, 40)(26, 30)(29, 61)(44, 49)(73, 75)(79, 81)(88, 89)(155, 156)(185, 187)(206, 211)(232, 247)
d: (18, 40)(20, 38)(29, 61)(31, 60)(37, 46)(39, 48)(41, 47)(43, 56)(44, 73)(49, 75)(50, 86)(51, 77)(52, 84)(53, 54)(62, 65)(66, 94)(67, 104)(68, 74)(76, 125)(79, 88)(81, 89)(82, 120)(83, 91)(87, 119)(90, 116)(95, 117)(96, 126)(97, 123)(105, 122)(106, 109)(108, 118)(110, 121)(134, 243)(135, 203)(137, 205)(138, 228)(141, 224)(142, 227)(144, 249)(145, 238)(148, 237)(150, 242)(152, 230)(153, 218)(154, 221)(155, 247)(156, 232)(157, 201)(163, 199)(164, 192)(165, 250)(166, 251)(169, 220)(173, 253)(174, 197)(175, 244)(177, 248)(180, 216)(182, 222)(183, 210)(184, 202)(185, 206)(186, 223)(187, 211)
e: (38, 47)(44, 79)(49, 81)(60, 65)(86, 94)(116, 118)(120, 122)(125, 126)(141, 144)(163, 169)(197, 244)(203, 205)
f: (3, 14)(4, 25)(6, 13)(7, 43)(9, 36)(10, 37)(15, 61)(17, 56)(18, 30)(19, 29)(24, 35)(26, 40)(28, 46)(38, 60)(44, 49)(47, 65)(57, 70)(58, 101)(59, 103)(71, 115)(72, 114)(79, 81)(102, 112)(113, 128)(131, 170)(132, 161)(136, 162)(140, 172)(146, 191)(147, 194)(149, 225)(151, 233)(154, 202)(155, 206)(156, 211)(157, 223)(176, 214)(178, 215)(179, 241)(181, 209)(184, 201)(185, 232)(186, 221)(187, 247)(195, 217)(204, 229)(208, 231)(234, 235)
g: (8, 22)(11, 33)(21, 32)(39, 53)(42, 63)(48, 54)(55, 85)(69, 107)(158, 159)(189, 190)(198, 207)(226, 239)
h: (58, 102)(59, 103)(71, 113)(72, 114)(100, 111)(101, 112)(115, 128)(124, 127)(147, 151)(179, 181)(194, 233)(209, 241)
m: (16, 23)(21, 39)(27, 34)(32, 53)(42, 48)(45, 52)(50, 82)(51, 97)(54, 63)(55, 85)(64, 68)(66, 105)(67, 110)(69, 107)(74, 92)(76, 90)(77, 87)(80, 84)(83, 117)(91, 121)(95, 104)(96, 108)(106, 119)(109, 123)(134, 165)(138, 166)(142, 164)(145, 173)(148, 230)(150, 218)(152, 242)(153, 237)(158, 226)(159, 239)(160, 196)(177, 222)(180, 210)(182, 216)(183, 248)(188, 255)(189, 207)(190, 198)(192, 238)(227, 253)(228, 250)(236, 256)(240, 254)(243, 251)
n1: (39, 48)(45, 80)(53, 54)(64, 92)(87, 95)(97, 110)(117, 119)(121, 123)(142, 145)(165, 166)(227, 238)(250, 251)
a1: (7, 17)(10, 28)(20, 31)(37, 46)(38, 60)(41, 62)(43, 56)(47, 65)(154, 157)(184, 186)(201, 221)(202, 223)
b1: (16, 23)(27, 34)(45, 64)(52, 68)(74, 84)(78, 93)(80, 92)(98, 99)(160, 256)(188, 254)(196, 236)(240, 255)
c1: (8, 16, 22, 23)(11, 27, 33, 34)(21, 74, 32, 84)(24, 57)(35, 70)(39, 80, 53, 92)(42, 68, 63, 52)(45, 54, 64, 48)(55, 99, 85, 98)(59, 72)(69, 93, 107, 78)(77, 104)(87, 95)(91, 109)(103, 114)(121, 123)(129, 213)(130, 193)(133, 252)(134, 253)(138, 192)(139, 245)(142, 251)(143, 212)(145, 250)(158, 160, 159, 256)(164, 243)(165, 227)(166, 238)(167, 200)(168, 219)(171, 246)(173, 228)(188, 189, 254, 190)(196, 226, 236, 239)(198, 240, 207, 255)
d1: (8, 16, 22, 23)(11, 27, 33, 34)(21, 74, 32, 84)(39, 80, 53, 92)(42, 68, 63, 52)(45, 54, 64, 48)(55, 93, 85, 78)(59, 72)(69, 99, 107, 98)(77, 104)(87, 95)(91, 109)(100, 124)(103, 114)(111, 127)(121, 123)(129, 213)(130, 193)(133, 245)(134, 253)(138, 192)(139, 252)(142, 251)(143, 212)(145, 250)(158, 160, 159, 256)(164, 243)(165, 227)(166, 238)(167, 200)(168, 246)(171, 219)(173, 228)(188, 189, 254, 190)(196, 226, 236, 239)(198, 240, 207, 255)
e1: (6, 14)(9, 25)(18, 29)(37, 43)(40, 61)(46, 56)(101, 115)(112, 128)(132, 140)(162, 170)(195, 234)(208, 229)
f1: (1, 3, 2, 13)(4, 12, 36, 5)(6, 24)(7, 11, 26, 23)(8, 15, 34, 10)(9, 35)(14, 57)(16, 17, 33, 30)(18, 93, 46, 85)(19, 27, 28, 22)(20, 21, 88, 84)(25, 70)(29, 99, 56, 107)(31, 32, 89, 74)(37, 55, 40, 78)(38, 39, 79, 64)(41, 42, 73, 52)(43, 69, 61, 98)(44, 92, 47, 48)(45, 60, 53, 81)(49, 80, 65, 54)(50, 91, 66, 109)(51, 76)(58, 72)(59, 71)(62, 63, 75, 68)(67, 96)(77, 105, 104, 82)(83, 90)(86, 97, 94, 110)(87, 116)(95, 118)(100, 101, 124, 115)(102, 114)(103, 113)(106, 108)(111, 112, 127, 128)(117, 122, 119, 120)(121, 125)(123, 126)(129, 131, 212, 204)(130, 172, 200, 235)(132, 245, 234, 133)(134, 174, 253, 220)(135, 243, 224, 164)(136, 213, 231, 143)(137, 228, 249, 173)(138, 175, 192, 199)(139, 140, 252, 195)(141, 238, 203, 165)(142, 163, 250, 244)(144, 227, 205, 166)(145, 169, 251, 197)(148, 183)(150, 182)(152, 180)(153, 177)(154, 198, 185, 255)(155, 236, 186, 239)(156, 196, 184, 226)(157, 207, 187, 240)(158, 232, 256, 202)(159, 247, 160, 223)(161, 193, 217, 167)(162, 246, 229, 168)(170, 219, 208, 171)(176, 178)(179, 181)(188, 201, 189, 211)(190, 206, 254, 221)(191, 214)(194, 209)(210, 248)(215, 225)(216, 222)(218, 242)(230, 237)(233, 241)
g1: (76, 90)(77, 91)(86, 120)(87, 121)(94, 122)(95, 123)(96, 108)(104, 109)(152, 153)(182, 183)(216, 248)(237, 242)
h1: (2, 5)(3, 8, 6, 16, 13, 22, 14, 23)(4, 11, 9, 27, 36, 33, 25, 34)(7, 21, 46, 68, 28, 63, 43, 84)(10, 32, 56, 52, 17, 42, 37, 74)(15, 39, 18, 45, 30, 54, 61, 92)(19, 48, 40, 80, 26, 53, 29, 64)(20, 51, 38, 91, 62, 106, 65, 104)(24, 59, 70, 114)(31, 67, 60, 109, 41, 83, 47, 77)(35, 72, 57, 103)(44, 87, 89, 119, 81, 123, 73, 97)(49, 95, 88, 117, 79, 121, 75, 110)(50, 116, 120, 96, 105, 126, 94, 90)(55, 115, 99, 71, 85, 101, 98, 58)(66, 125, 122, 108, 82, 118, 86, 76)(69, 128, 93, 113, 107, 112, 78, 102)(111, 124)(129, 146, 213, 191)(130, 178, 193, 215)(131, 198, 162, 240, 136, 207, 170, 255)(132, 196, 161, 226, 140, 236, 172, 239)(133, 147, 252, 194)(134, 186, 173, 154, 138, 184, 164, 157)(135, 222, 203, 183, 137, 210, 205, 182)(139, 151, 245, 233)(141, 248, 249, 177, 144, 216, 224, 180)(142, 187, 165, 155, 145, 185, 166, 156)(143, 149, 212, 225)(148, 169, 242, 199, 150, 163, 237, 220)(152, 175, 230, 244, 153, 174, 218, 197)(158, 195, 160, 217, 159, 234, 256, 235)(167, 176, 200, 214)(168, 181, 219, 209)(171, 179, 246, 241)(188, 204, 189, 208, 254, 231, 190, 229)(192, 221, 228, 223, 253, 201, 243, 202)(206, 250, 247, 227, 211, 251, 232, 238)
m1: (39, 48)(44, 79)(49, 81)(50, 90)(51, 77)(52, 84)(53, 54)(66, 108)(67, 104)(68, 74)(73, 88)(75, 89)(76, 82)(83, 91)(86, 116)(87, 110)(94, 118)(95, 97)(96, 105)(106, 109)(117, 123)(119, 121)(120, 125)(122, 126)(134, 243)(135, 220)(137, 199)(138, 228)(141, 244)(142, 227)(144, 197)(145, 238)(148, 182)(150, 183)(152, 180)(153, 177)(163, 205)(164, 192)(165, 250)(166, 251)(169, 203)(173, 253)(174, 249)(175, 224)(210, 242)(216, 230)(218, 248)(222, 237)
n2: (50, 82)(51, 83)(66, 105)(67, 106)(97, 117)(110, 119)(116, 125)(118, 126)(148, 150)(177, 180)(210, 222)(218, 230)
a2: (21, 42)(32, 63)(51, 67)(52, 84)(68, 74)(77, 104)(83, 106)(91, 109)(134, 138)(164, 173)(192, 253)(228, 243)
b2: (1, 2)(5, 12)(8, 11)(16, 27)(22, 33)(23, 34)(59, 72)(103, 114)(129, 143)(130, 167)(193, 200)(212, 213)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 37 ]
256
-1 146 191 213 129
-2 143 146 212 191
-3 231 146 214 131
-4 231 149 215 131
-5 213 225 149 129
-6 176 191 162 229
-7 154 221 235 131
-8 198 167 190 213
-9 178 225 162 229
-10 154 221 136 217
-11 198 190 212 130
-12 143 212 225 149
-13 146 136 214 204
-14 176 191 170 208
-15 231 161 206 185
-16 188 200 129 240
-17 157 201 235 131
-18 156 247 140 229
-19 187 231 211 161
-20 154 199 202 137
-21 198 158 138 228
-22 167 189 213 207
-23 254 200 255 129
-24 178 168 246 214
-25 178 170 225 208
-26 204 172 206 185
-27 143 188 193 240
-28 157 201 136 217
-29 132 156 247 208
-30 187 211 204 172
-31 199 157 223 137
-32 159 138 228 207
-33 189 212 130 207
-34 143 254 255 193
-35 176 168 246 215
-36 136 149 204 215
-37 202 162 195 186
-38 221 205 184 163
-39 166 190 226 250
-40 155 232 140 229
-41 154 220 135 202
-42 198 243 134 158
-43 234 202 170 186
-44 156 206 141 197
-45 188 236 227 142
-46 223 162 184 195
-47 221 169 203 184
-48 165 190 226 251
-49 155 211 141 197
-50 224 137 150 230
-51 210 192 138 150
-52 253 255 256 164
-53 166 189 239 250
-54 165 189 239 251
-55 158 246 139 239
-56 223 234 170 184
-57 178 214 171 219
-58 233 179 235 172
-59 167 181 193 241
-60 201 205 163 186
-61 132 155 232 208
-62 220 135 157 223
-63 243 134 159 207
-64 254 227 196 142
-65 201 169 203 186
-66 135 150 249 230
-67 253 210 134 150
-68 253 160 240 164
-69 133 158 239 219
-70 176 171 215 219
-71 233 179 161 217
-72 200 181 130 241
-73 232 224 174 185
-74 192 160 173 240
-75 187 224 247 174
-76 199 182 248 175
-77 242 183 228 164
-78 168 256 236 252
-79 144 156 244 206
-80 188 145 236 238
-81 144 155 211 244
-82 224 137 148 218
-83 222 148 192 138
-84 255 256 192 173
-85 246 159 226 139
-86 242 205 141 152
-87 248 250 152 142
-88 232 249 185 175
-89 187 247 249 175
-90 199 183 216 175
-91 182 237 228 164
-92 254 145 238 196
-93 168 160 196 252
-94 242 144 203 152
-95 145 248 152 251
-96 220 182 248 174
-97 166 180 238 218
-98 245 256 236 171
-99 245 160 171 196
-100 233 245 139 151
-101 234 140 151 241
-102 235 181 172 194
-103 209 167 179 193
-104 242 243 183 173
-105 135 148 249 218
-106 253 134 222 148
-107 133 159 226 219
-108 220 183 216 174
-109 243 182 237 173
-110 165 180 227 218
-111 245 147 139 194
-112 209 234 147 140
-113 181 161 194 217
-114 209 200 179 130
-115 132 151 195 241
-116 210 244 180 163
-117 166 177 238 230
-118 210 169 180 197
-119 165 177 227 230
-120 237 205 141 153
-121 216 250 142 153
-122 144 203 237 153
-123 145 216 251 153
-124 133 233 151 252
-125 177 222 244 163
-126 177 222 169 197
-127 133 147 194 252
-128 132 209 147 195
-129 1 23 5 16
-130 11 33 114 72
-131 3 4 17 7
-132 115 61 29 128
-133 69 124 127 107
-134 67 106 63 42
-135 66 105 62 41
-136 13 36 28 10
-137 82 50 20 31
-138 83 51 21 32
-139 55 100 111 85
-140 101 112 18 40
-141 44 49 86 120
-142 121 45 64 87
-143 12 34 2 27
-144 122 79 81 94
-145 123 80 92 95
-146 1 2 13 3
-147 111 112 127 128
-148 82 83 105 106
-149 12 36 4 5
-150 66 67 50 51
-151 100 101 124 115
-152 94 95 86 87
-153 121 122 123 120
-154 7 41 20 10
-155 81 49 61 40
-156 44 79 18 29
-157 17 28 62 31
-158 55 69 42 21
-159 63 85 107 32
-160 99 68 93 74
-161 113 15 71 19
-162 46 37 6 9
-163 125 38 60 116
-164 77 68 91 52
-165 110 48 119 54
-166 39 117 53 97
-167 22 59 103 8
-168 78 24 35 93
-169 47 126 118 65
-170 56 14 25 43
-171 99 57 70 98
-172 58 102 26 30
-173 104 84 74 109
-174 73 96 75 108
-175 88 89 90 76
-176 35 14 70 6
-177 125 126 117 119
-178 24 57 25 9
-179 58 103 114 71
-180 110 116 118 97
-181 102 113 59 72
-182 91 96 76 109
-183 77 90 104 108
-184 56 46 47 38
-185 88 15 26 73
-186 37 60 43 65
-187 89 19 30 75
-188 45 80 16 27
-189 22 33 53 54
-190 11 48 39 8
-191 1 2 14 6
-192 83 51 84 74
-193 34 59 103 27
-194 111 102 113 127
-195 46 37 115 128
-196 99 92 93 64
-197 44 49 126 118
-198 11 8 42 21
-199 90 20 31 76
-200 23 114 16 72
-201 60 17 28 65
-202 37 41 20 43
-203 122 47 94 65
-204 13 36 26 30
-205 38 60 86 120
-206 44 79 15 26
-207 22 33 63 32
-208 14 25 61 29
-209 112 103 114 128
-210 67 116 51 118
-211 81 49 19 30
-212 11 33 12 2
-213 22 1 5 8
-214 13 24 57 3
-215 35 36 4 70
-216 121 90 123 108
-217 113 71 28 10
-218 110 82 105 97
-219 57 69 70 107
-220 62 41 96 108
-221 47 38 7 10
-222 125 126 83 106
-223 56 46 62 31
-224 82 50 73 75
-225 12 25 5 9
-226 48 39 85 107
-227 110 45 64 119
-228 77 91 21 32
-229 6 18 40 9
-230 66 50 117 119
-231 3 4 15 19
-232 88 61 40 73
-233 100 58 124 71
-234 56 101 112 43
-235 58 102 17 7
-236 45 78 80 98
-237 122 91 109 120
-238 80 92 117 97
-239 55 69 53 54
-240 68 16 27 74
-241 101 59 115 72
-242 77 104 94 86
-243 104 63 42 109
-244 79 81 125 116
-245 99 100 111 98
-246 55 24 35 85
-247 89 18 29 75
-248 95 96 76 87
-249 66 88 89 105
-250 121 39 53 87
-251 123 48 95 54
-252 78 124 93 127
-253 67 68 106 52
-254 23 34 92 64
-255 23 34 84 52
-256 78 84 52 98
0

**************