C4graphGraph forms for C4 [ 256, 38 ] = CPM(8,2,8,1)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 38 ] = CPM(8,2,8,1).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {66, 67}, {76, 77}, {160, 161}, {5, 7}, {97, 99}, {49, 53}, {138, 142}, {107, 110}, {240, 245}, {56, 62}, {248, 254}, {154, 156}, {8, 15}, {235, 236}, {234, 237}, {226, 229}, {81, 86}, {115, 123}, {131, 139}, {3, 10}, {193, 200}, {144, 153}, {2, 8}, {243, 249}, {146, 152}, {34, 41}, {240, 251}, {244, 248}, {23, 25}, {117, 123}, {161, 175}, {36, 43}, {194, 205}, {85, 90}, {80, 95}, {48, 63}, {12, 28}, {70, 86}, {14, 31}, {197, 212}, {162, 179}, {226, 240}, {102, 114}, {137, 157}, {8, 29}, {12, 25}, {7, 17}, {41, 63}, {4, 19}, {199, 208}, {37, 61}, {38, 62}, {111, 119}, {14, 23}, {193, 216}, {131, 154}, {135, 158}, {132, 158}, {167, 188}, {200, 211}, {171, 183}, {69, 88}, {77, 83}, {197, 218}, {20, 52}, {134, 166}, {147, 179}, {145, 176}, {205, 239}, {93, 126}, {25, 60}, {131, 166}, {84, 114}, {209, 247}, {203, 236}, {4, 44}, {130, 170}, {91, 114}, {8, 34}, {71, 109}, {151, 189}, {76, 103}, {148, 184}, {3, 46}, {223, 242}, {84, 121}, {82, 127}, {30, 48}, {147, 188}, {213, 250}, {194, 237}, {193, 238}, {152, 183}, {17, 33}, {150, 167}, {145, 162}, {149, 166}, {150, 165}, {6, 50}, {198, 242}, {130, 182}, {22, 35}, {202, 255}, {94, 107}, {68, 113}, {70, 112}, {197, 243}, {87, 97}, {19, 36}, {76, 116}, {149, 173}, {148, 173}, {2, 56}, {75, 113}, {143, 181}, {17, 42}, {78, 117}, {131, 191}, {203, 247}, {70, 123}, {13, 51}, {208, 238}, {144, 174}, {151, 169}, {16, 80}, {30, 94}, {136, 200}, {27, 90}, {63, 126}, {168, 234}, {9, 74}, {188, 255}, {145, 210}, {153, 218}, {12, 72}, {172, 232}, {35, 103}, {21, 81}, {22, 83}, {57, 124}, {41, 108}, {149, 208}, {40, 110}, {59, 125}, {160, 230}, {41, 97}, {189, 245}, {159, 215}, {4, 77}, {144, 217}, {137, 195}, {38, 109}, {20, 88}, {40, 101}, {150, 216}, {152, 215}, {163, 236}, {5, 85}, {36, 116}, {32, 112}, {133, 213}, {7, 86}, {168, 249}, {9, 88}, {9, 91}, {183, 229}, {156, 206}, {16, 67}, {184, 235}, {164, 247}, {16, 68}, {181, 225}, {169, 253}, {61, 105}, {31, 75}, {23, 65}, {172, 250}, {61, 106}, {20, 77}, {162, 251}, {148, 206}, {26, 65}, {39, 124}, {133, 222}, {45, 113}, {181, 233}, {10, 87}, {128, 221}, {18, 76}, {168, 246}, {29, 67}, {15, 80}, {190, 225}, {182, 233}, {39, 120}, {19, 115}, {59, 91}, {57, 89}, {35, 66}, {173, 204}, {130, 227}, {141, 236}, {142, 239}, {157, 252}, {161, 192}, {35, 64}, {186, 222}, {139, 238}, {191, 218}, {21, 115}, {160, 198}, {40, 65}, {163, 202}, {49, 88}, {154, 243}, {51, 89}, {170, 192}, {129, 235}, {46, 69}, {180, 223}, {179, 216}, {50, 89}, {47, 68}, {1, 109}, {15, 99}, {34, 79}, {191, 210}, {37, 72}, {10, 100}, {32, 78}, {137, 231}, {152, 246}, {27, 116}, {45, 66}, {40, 71}, {164, 213}, {183, 198}, {151, 229}, {189, 207}, {165, 215}, {24, 107}, {33, 82}, {136, 252}, {185, 205}, {167, 211}, {153, 237}, {54, 67}, {171, 222}, {156, 233}, {55, 65}, {13, 122}, {159, 231}, {37, 92}, {157, 228}, {21, 111}, {43, 81}, {128, 251}, {10, 118}, {174, 210}, {55, 75}, {11, 119}, {137, 245}, {159, 226}, {172, 209}, {128, 254}, {167, 217}, {187, 196}, {6, 134}, {11, 139}, {127, 254}, {72, 202}, {87, 213}, {118, 244}, {74, 201}, {126, 253}, {59, 191}, {82, 214}, {121, 253}, {79, 202}, {6, 128}, {73, 207}, {107, 237}, {54, 177}, {78, 201}, {71, 192}, {120, 255}, {122, 253}, {62, 182}, {98, 234}, {83, 219}, {122, 242}, {105, 224}, {15, 132}, {90, 209}, {57, 178}, {25, 146}, {113, 250}, {3, 143}, {73, 197}, {48, 188}, {108, 224}, {117, 249}, {32, 173}, {94, 211}, {84, 218}, {109, 227}, {61, 178}, {46, 190}, {72, 217}, {126, 239}, {98, 241}, {100, 247}, {108, 255}, {39, 179}, {115, 231}, {18, 135}, {95, 201}, {26, 141}, {60, 171}, {69, 221}, {96, 249}, {1, 155}, {47, 181}, {102, 252}, {54, 170}, {104, 244}, {124, 224}, {11, 150}, {69, 219}, {111, 241}, {36, 187}, {60, 163}, {48, 175}, {123, 228}, {78, 238}, {24, 185}, {27, 184}, {73, 234}, {103, 196}, {66, 230}, {127, 219}, {11, 174}, {86, 243}, {34, 135}, {31, 186}, {42, 140}, {104, 206}, {101, 194}, {106, 205}, {57, 145}, {94, 246}, {12, 165}, {89, 240}, {38, 143}, {125, 212}, {46, 132}, {62, 148}, {53, 159}, {38, 138}, {43, 134}, {58, 151}, {118, 219}, {28, 178}, {26, 170}, {52, 132}, {119, 199}, {80, 225}, {28, 174}, {58, 136}, {102, 212}, {2, 177}, {96, 211}, {1, 180}, {104, 221}, {74, 252}, {121, 207}, {13, 186}, {30, 169}, {24, 175}, {111, 215}, {56, 129}, {101, 220}, {32, 154}, {82, 232}, {31, 164}, {95, 228}, {121, 194}, {14, 178}, {33, 157}, {29, 161}, {127, 195}, {21, 168}, {93, 224}, {50, 140}, {98, 220}, {22, 214}, {33, 225}, {24, 217}, {112, 177}, {29, 223}, {50, 241}, {125, 190}, {20, 208}, {17, 212}, {73, 140}, {64, 133}, {39, 226}, {16, 214}, {112, 182}, {124, 186}, {4, 195}, {64, 135}, {47, 232}, {9, 193}, {44, 228}, {87, 158}, {49, 251}, {47, 227}, {58, 246}, {3, 206}, {83, 158}, {105, 164}, {2, 204}, {93, 147}, {79, 129}, {104, 166}, {110, 160}, {75, 155}, {14, 220}, {43, 248}, {120, 171}, {6, 210}, {55, 227}, {42, 254}, {19, 199}, {92, 138}, {85, 130}, {99, 180}, {90, 141}, {30, 198}, {60, 230}, {106, 176}, {118, 172}, {102, 189}, {23, 203}, {100, 184}, {58, 231}, {92, 129}, {81, 140}, {120, 165}, {18, 204}, {42, 245}, {45, 242}, {63, 223}, {79, 175}, {116, 149}, {122, 155}, {125, 156}, {64, 163}, {84, 176}, {92, 185}, {55, 209}, {59, 221}, {105, 142}, {13, 229}, {44, 196}, {108, 133}, {103, 141}, {96, 139}, {22, 250}, {99, 143}, {5, 232}, {93, 176}, {53, 216}, {28, 241}, {1, 239}, {100, 138}, {95, 177}, {85, 187}, {37, 203}, {7, 233}, {27, 244}, {97, 142}, {51, 220}, {68, 180}, {98, 146}, {119, 134}, {49, 195}, {54, 196}, {53, 199}, {45, 222}, {74, 190}, {52, 204}, {56, 192}, {18, 235}, {96, 153}, {91, 162}, {44, 214}, {106, 144}, {26, 230}, {51, 207}, {110, 146}, {5, 248}, {70, 187}, {52, 201}, {117, 136}, {71, 185}, {101, 155}, {114, 256}, {147, 256}, {169, 256}, {200, 256} }>;

(II) A more general form is to represent the graph as the orbit of {66, 67} under the group generated by the following permutations:

a: (2, 54)(3, 232)(4, 20)(5, 206)(7, 156)(8, 67)(9, 137)(10, 172)(11, 111)(13, 93)(14, 61)(15, 16)(17, 125)(18, 103)(19, 208)(21, 139)(22, 158)(23, 37)(24, 110)(25, 72)(26, 129)(31, 105)(32, 70)(33, 190)(34, 66)(35, 135)(36, 149)(38, 227)(40, 185)(41, 45)(42, 59)(43, 166)(44, 52)(46, 82)(47, 143)(48, 198)(50, 210)(51, 176)(55, 138)(56, 170)(58, 200)(60, 202)(62, 130)(63, 242)(65, 92)(68, 99)(69, 127)(73, 218)(74, 157)(75, 142)(78, 123)(79, 230)(81, 131)(84, 207)(85, 148)(86, 154)(87, 250)(88, 195)(89, 145)(90, 184)(91, 245)(96, 168)(97, 113)(98, 144)(100, 209)(101, 205)(104, 248)(106, 220)(108, 222)(114, 189)(115, 238)(122, 126)(132, 214)(140, 191)(141, 235)(146, 217)(147, 229)(150, 215)(151, 256)(152, 167)(153, 234)(155, 239)(159, 216)(160, 175)(162, 240)(171, 255)(173, 187)(174, 241)(179, 226)(183, 188)(186, 224)(193, 231)(196, 204)(201, 228)(211, 246)(221, 254)
b: (2, 124)(3, 169)(4, 11)(5, 234)(6, 123)(7, 73)(8, 224)(10, 30)(12, 103)(13, 62)(14, 170)(15, 93)(16, 106)(17, 197)(18, 120)(19, 119)(20, 216)(21, 43)(22, 217)(23, 26)(24, 250)(25, 141)(27, 152)(28, 196)(29, 105)(31, 192)(32, 240)(33, 218)(34, 108)(35, 72)(36, 111)(37, 66)(38, 122)(39, 204)(40, 55)(42, 243)(44, 174)(45, 92)(46, 256)(47, 194)(48, 87)(49, 238)(50, 70)(51, 182)(52, 179)(53, 208)(54, 178)(56, 186)(57, 177)(58, 104)(59, 252)(60, 236)(61, 67)(63, 97)(64, 202)(68, 205)(69, 200)(71, 75)(74, 91)(76, 165)(77, 150)(78, 251)(79, 133)(80, 176)(82, 153)(83, 167)(84, 225)(85, 98)(86, 140)(88, 193)(89, 112)(90, 146)(94, 118)(95, 145)(96, 127)(99, 126)(100, 198)(101, 227)(102, 125)(107, 172)(109, 155)(110, 209)(113, 185)(114, 190)(115, 134)(116, 215)(117, 128)(121, 181)(129, 222)(130, 220)(131, 137)(132, 147)(135, 255)(136, 221)(138, 242)(139, 195)(142, 223)(143, 253)(144, 214)(148, 229)(149, 159)(151, 206)(154, 245)(156, 189)(157, 191)(158, 188)(160, 247)(161, 164)(162, 201)(166, 231)(168, 248)(171, 235)(173, 226)(175, 213)(180, 239)(183, 184)(187, 241)(203, 230)(207, 233)(210, 228)(211, 219)(232, 237)(244, 246)(249, 254)
c: (2, 178)(3, 237)(4, 159)(5, 256)(6, 78)(7, 114)(8, 14)(9, 81)(10, 107)(11, 149)(12, 18)(13, 16)(15, 220)(17, 102)(19, 53)(20, 111)(21, 88)(22, 183)(23, 34)(24, 100)(25, 135)(26, 108)(27, 167)(28, 204)(29, 31)(30, 172)(32, 210)(33, 189)(35, 171)(36, 216)(37, 129)(38, 205)(39, 196)(40, 97)(41, 65)(42, 252)(43, 193)(44, 226)(46, 234)(47, 253)(48, 209)(49, 115)(50, 201)(51, 80)(52, 241)(54, 124)(55, 63)(56, 61)(57, 177)(58, 127)(59, 243)(60, 64)(62, 106)(66, 222)(67, 186)(68, 122)(69, 168)(70, 162)(71, 142)(72, 235)(73, 190)(74, 140)(75, 223)(76, 165)(77, 215)(79, 203)(82, 151)(83, 152)(84, 233)(85, 147)(86, 91)(87, 110)(89, 95)(90, 188)(93, 130)(94, 118)(96, 104)(98, 132)(99, 101)(103, 120)(105, 192)(109, 239)(112, 145)(113, 242)(116, 150)(117, 128)(119, 208)(121, 181)(123, 251)(125, 197)(126, 227)(133, 230)(134, 238)(136, 254)(138, 185)(139, 166)(141, 255)(143, 194)(144, 148)(146, 158)(153, 206)(154, 191)(155, 180)(156, 218)(157, 245)(160, 213)(161, 164)(169, 232)(170, 224)(173, 174)(175, 247)(176, 182)(179, 187)(184, 217)(195, 231)(198, 250)(200, 248)(202, 236)(207, 225)(211, 244)(214, 229)(219, 246)(221, 249)(228, 240)
d: (1, 2)(3, 160)(4, 124)(5, 72)(6, 111)(7, 217)(8, 180)(9, 151)(10, 230)(11, 140)(12, 248)(13, 20)(14, 116)(15, 223)(16, 41)(17, 167)(18, 75)(19, 57)(21, 210)(22, 133)(23, 27)(24, 233)(25, 244)(26, 100)(28, 43)(29, 99)(30, 190)(31, 76)(32, 194)(33, 188)(34, 68)(35, 213)(36, 178)(37, 85)(38, 192)(39, 195)(40, 148)(42, 150)(44, 224)(45, 158)(46, 198)(47, 79)(48, 225)(49, 226)(50, 119)(51, 208)(52, 122)(53, 240)(54, 142)(55, 235)(56, 109)(58, 91)(59, 246)(60, 118)(61, 187)(62, 71)(63, 80)(64, 250)(65, 184)(66, 87)(67, 97)(69, 183)(70, 106)(73, 139)(74, 169)(77, 186)(78, 121)(81, 174)(82, 255)(83, 222)(84, 117)(86, 144)(88, 229)(89, 199)(90, 203)(92, 130)(93, 228)(94, 125)(95, 126)(96, 197)(98, 166)(101, 173)(102, 200)(103, 164)(104, 146)(105, 196)(107, 156)(108, 214)(110, 206)(112, 205)(113, 135)(114, 136)(115, 145)(120, 127)(123, 176)(128, 215)(129, 227)(131, 234)(132, 242)(134, 241)(137, 179)(138, 170)(141, 247)(143, 161)(147, 157)(149, 220)(152, 221)(153, 243)(154, 237)(155, 204)(159, 251)(162, 231)(163, 172)(165, 254)(168, 191)(171, 219)(175, 181)(177, 239)(182, 185)(189, 193)(201, 253)(202, 232)(207, 238)(209, 236)(211, 212)(216, 245)(218, 249)(252, 256)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 38 ]
256
-1 155 180 239 109
-2 56 177 204 8
-3 143 46 206 10
-4 44 77 19 195
-5 232 248 7 85
-6 210 134 50 128
-7 233 5 17 86
-8 34 2 15 29
-9 88 91 193 74
-10 100 3 118 87
-11 139 150 119 174
-12 165 25 28 72
-13 122 51 229 186
-14 220 23 178 31
-15 99 132 80 8
-16 67 68 80 214
-17 33 212 7 42
-18 135 235 204 76
-19 199 36 4 115
-20 77 88 52 208
-21 111 168 81 115
-22 35 214 83 250
-23 14 25 203 65
-24 107 217 185 175
-25 12 23 146 60
-26 170 141 65 230
-27 90 244 116 184
-28 12 178 174 241
-29 67 223 161 8
-30 198 48 169 94
-31 14 75 164 186
-32 154 78 112 173
-33 157 82 225 17
-34 79 135 8 41
-35 22 66 103 64
-36 187 116 19 43
-37 92 203 61 72
-38 143 138 62 109
-39 124 179 226 120
-40 110 101 71 65
-41 34 63 97 108
-42 254 245 17 140
-43 134 36 81 248
-44 4 214 228 196
-45 66 242 222 113
-46 132 3 69 190
-47 232 68 181 227
-48 188 30 63 175
-49 88 195 53 251
-50 89 6 140 241
-51 220 89 13 207
-52 132 201 204 20
-53 199 49 159 216
-54 67 177 170 196
-55 209 227 75 65
-56 2 192 62 129
-57 89 145 178 124
-58 231 136 246 151
-59 221 91 125 191
-60 25 171 163 230
-61 178 37 105 106
-62 56 38 148 182
-63 223 48 126 41
-64 133 35 135 163
-65 55 23 26 40
-66 45 67 35 230
-67 66 16 29 54
-68 47 113 180 16
-69 88 221 46 219
-70 187 112 123 86
-71 192 40 185 109
-72 12 37 202 217
-73 234 140 207 197
-74 190 201 9 252
-75 55 155 113 31
-76 77 103 116 18
-77 4 83 20 76
-78 201 117 238 32
-79 34 202 129 175
-80 15 16 225 95
-81 140 86 21 43
-82 33 232 214 127
-83 22 77 158 219
-84 121 176 114 218
-85 187 90 5 130
-86 243 70 81 7
-87 158 213 97 10
-88 69 49 9 20
-89 57 50 51 240
-90 209 27 85 141
-91 59 114 162 9
-92 37 138 129 185
-93 176 147 224 126
-94 211 246 30 107
-95 177 80 201 228
-96 211 139 249 153
-97 99 41 87 142
-98 220 146 234 241
-99 143 15 180 97
-100 247 138 184 10
-101 220 155 40 194
-102 189 212 114 252
-103 35 141 196 76
-104 166 221 244 206
-105 224 61 142 164
-106 176 144 61 205
-107 110 24 94 237
-108 133 255 224 41
-109 1 38 71 227
-110 146 160 40 107
-111 215 119 21 241
-112 177 70 182 32
-113 45 68 250 75
-114 91 102 256 84
-115 231 123 19 21
-116 36 27 149 76
-117 78 123 136 249
-118 244 172 10 219
-119 11 111 199 134
-120 165 255 39 171
-121 253 84 194 207
-122 242 253 155 13
-123 70 115 117 228
-124 57 224 39 186
-125 156 190 212 59
-126 253 93 63 239
-127 254 82 195 219
-128 221 254 6 251
-129 56 79 92 235
-130 170 182 227 85
-131 154 166 191 139
-132 46 15 158 52
-133 222 213 64 108
-134 166 6 119 43
-135 34 158 18 64
-136 200 58 117 252
-137 231 157 245 195
-138 100 92 38 142
-139 11 238 96 131
-140 81 50 73 42
-141 90 26 103 236
-142 105 138 239 97
-143 99 3 38 181
-144 106 217 174 153
-145 176 210 57 162
-146 110 25 152 98
-147 188 179 256 93
-148 62 173 184 206
-149 166 116 173 208
-150 11 165 167 216
-151 189 58 169 229
-152 146 246 215 183
-153 144 237 96 218
-154 243 156 32 131
-155 1 122 101 75
-156 154 233 125 206
-157 33 137 228 252
-158 132 135 83 87
-159 231 215 226 53
-160 110 198 161 230
-161 192 160 29 175
-162 145 91 179 251
-163 202 60 236 64
-164 213 247 105 31
-165 12 215 150 120
-166 134 104 149 131
-167 188 211 150 217
-168 234 246 249 21
-169 253 256 30 151
-170 26 192 130 54
-171 222 60 183 120
-172 209 232 118 250
-173 148 149 204 32
-174 11 144 210 28
-175 24 79 48 161
-176 145 93 84 106
-177 2 112 95 54
-178 57 14 28 61
-179 147 39 216 162
-180 99 1 68 223
-181 143 233 47 225
-182 112 233 62 130
-183 198 171 152 229
-184 100 235 27 148
-185 24 92 71 205
-186 13 222 124 31
-187 36 70 85 196
-188 167 255 48 147
-189 102 245 151 207
-190 46 125 225 74
-191 210 59 218 131
-192 56 71 170 161
-193 200 216 238 9
-194 121 101 237 205
-195 4 49 137 127
-196 44 187 103 54
-197 243 212 73 218
-198 242 160 183 30
-199 19 53 119 208
-200 211 256 136 193
-201 78 95 52 74
-202 79 255 72 163
-203 23 37 236 247
-204 2 18 52 173
-205 106 194 239 185
-206 156 3 104 148
-207 121 189 51 73
-208 199 149 238 20
-209 55 90 247 172
-210 145 191 6 174
-211 167 200 94 96
-212 102 125 17 197
-213 133 250 87 164
-214 22 44 16 82
-215 165 111 159 152
-216 179 193 150 53
-217 144 24 167 72
-218 191 84 153 197
-219 69 83 127 118
-220 101 14 51 98
-221 69 59 104 128
-222 45 133 171 186
-223 242 180 29 63
-224 124 93 105 108
-225 33 80 190 181
-226 159 39 229 240
-227 55 47 130 109
-228 44 123 157 95
-229 13 226 183 151
-230 66 26 60 160
-231 58 115 137 159
-232 47 5 82 172
-233 156 181 182 7
-234 168 237 73 98
-235 236 18 129 184
-236 235 203 141 163
-237 234 194 107 153
-238 78 193 139 208
-239 1 126 205 142
-240 89 245 226 251
-241 111 28 50 98
-242 198 45 122 223
-243 154 249 86 197
-244 27 104 248 118
-245 189 137 42 240
-246 58 168 94 152
-247 209 100 203 164
-248 254 244 5 43
-249 243 168 117 96
-250 22 113 213 172
-251 49 128 162 240
-252 102 157 136 74
-253 121 122 169 126
-254 127 248 128 42
-255 188 202 108 120
-256 200 114 147 169
0

**************