C4graphGraph forms for C4 [ 256, 40 ] = PL(RC(4,8),[4^32,8^16])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 40 ] = PL(RC(4,8),[4^32,8^16]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 169}, {128, 187}, {128, 213}, {128, 232}, {1, 129}, {117, 245}, {108, 236}, {31, 159}, {66, 194}, {18, 147}, {77, 204}, {3, 129}, {122, 248}, {120, 250}, {110, 236}, {93, 223}, {90, 216}, {60, 190}, {59, 185}, {56, 186}, {24, 154}, {2, 129}, {38, 165}, {37, 166}, {16, 147}, {9, 138}, {5, 129}, {124, 248}, {78, 202}, {80, 212}, {34, 167}, {121, 252}, {119, 242}, {99, 230}, {98, 231}, {38, 163}, {30, 152}, {86, 208}, {98, 229}, {110, 233}, {106, 237}, {95, 215}, {107, 227}, {10, 131}, {126, 247}, {106, 227}, {95, 214}, {68, 205}, {70, 207}, {25, 147}, {61, 183}, {32, 170}, {68, 206}, {14, 133}, {42, 161}, {34, 174}, {96, 236}, {86, 218}, {25, 148}, {117, 248}, {49, 188}, {45, 160}, {35, 174}, {63, 178}, {87, 218}, {4, 138}, {94, 208}, {90, 212}, {35, 173}, {19, 157}, {94, 209}, {12, 156}, {19, 131}, {58, 171}, {57, 171}, {122, 232}, {66, 208}, {70, 212}, {75, 216}, {91, 200}, {30, 138}, {115, 231}, {107, 255}, {57, 173}, {33, 181}, {26, 143}, {120, 237}, {52, 161}, {88, 205}, {85, 195}, {126, 232}, {101, 243}, {103, 240}, {112, 231}, {5, 157}, {100, 252}, {67, 219}, {74, 210}, {82, 202}, {67, 218}, {99, 250}, {48, 170}, {113, 235}, {77, 215}, {82, 200}, {15, 148}, {115, 232}, {105, 242}, {42, 177}, {23, 139}, {113, 237}, {50, 174}, {41, 181}, {36, 184}, {33, 188}, {101, 248}, {58, 167}, {51, 174}, {47, 178}, {11, 149}, {105, 247}, {41, 183}, {39, 185}, {62, 161}, {17, 177}, {118, 214}, {69, 229}, {17, 176}, {116, 213}, {78, 239}, {39, 133}, {123, 217}, {119, 213}, {55, 149}, {81, 243}, {1, 162}, {104, 203}, {3, 160}, {83, 240}, {46, 138}, {51, 151}, {79, 235}, {7, 162}, {124, 217}, {104, 205}, {32, 133}, {24, 189}, {16, 181}, {71, 226}, {76, 233}, {4, 162}, {60, 154}, {54, 144}, {24, 190}, {23, 177}, {21, 179}, {74, 236}, {83, 245}, {88, 254}, {54, 145}, {53, 157}, {91, 243}, {84, 252}, {85, 253}, {13, 164}, {127, 214}, {61, 148}, {53, 156}, {27, 178}, {79, 230}, {10, 160}, {26, 176}, {22, 188}, {72, 227}, {120, 211}, {84, 255}, {6, 170}, {89, 245}, {20, 184}, {15, 163}, {8, 164}, {31, 178}, {73, 228}, {12, 162}, {123, 213}, {102, 200}, {89, 247}, {60, 146}, {49, 159}, {29, 179}, {13, 163}, {63, 145}, {84, 250}, {56, 151}, {97, 206}, {65, 238}, {52, 132}, {125, 205}, {100, 212}, {99, 211}, {59, 139}, {65, 241}, {36, 149}, {92, 237}, {62, 143}, {15, 189}, {114, 192}, {92, 238}, {69, 247}, {21, 166}, {22, 165}, {7, 179}, {9, 189}, {8, 188}, {71, 243}, {46, 155}, {47, 154}, {6, 176}, {48, 134}, {18, 164}, {73, 255}, {81, 231}, {43, 147}, {111, 215}, {76, 244}, {37, 156}, {121, 192}, {40, 146}, {112, 202}, {50, 136}, {43, 145}, {64, 250}, {11, 176}, {109, 214}, {24, 163}, {85, 238}, {40, 148}, {108, 208}, {55, 139}, {64, 252}, {29, 160}, {125, 192}, {118, 203}, {64, 253}, {20, 170}, {116, 202}, {103, 217}, {96, 222}, {93, 227}, {64, 254}, {72, 246}, {87, 233}, {2, 189}, {127, 192}, {102, 217}, {27, 164}, {14, 177}, {36, 228}, {101, 165}, {68, 132}, {19, 210}, {93, 156}, {35, 226}, {67, 130}, {68, 133}, {7, 197}, {92, 158}, {52, 246}, {36, 230}, {5, 198}, {33, 226}, {31, 220}, {21, 209}, {127, 187}, {115, 183}, {108, 168}, {104, 172}, {49, 245}, {43, 239}, {33, 229}, {31, 219}, {77, 137}, {3, 198}, {126, 187}, {62, 251}, {66, 135}, {7, 193}, {125, 187}, {93, 155}, {89, 159}, {47, 233}, {3, 196}, {110, 169}, {25, 222}, {23, 223}, {124, 180}, {70, 142}, {12, 197}, {98, 171}, {96, 169}, {95, 150}, {35, 234}, {89, 144}, {97, 171}, {112, 186}, {13, 198}, {114, 185}, {100, 175}, {15, 195}, {91, 151}, {56, 244}, {39, 235}, {79, 131}, {8, 197}, {123, 182}, {114, 191}, {45, 224}, {63, 242}, {85, 152}, {86, 155}, {87, 154}, {8, 198}, {94, 144}, {48, 254}, {10, 196}, {19, 220}, {63, 240}, {45, 253}, {111, 191}, {102, 182}, {59, 235}, {16, 193}, {53, 228}, {86, 135}, {38, 244}, {122, 168}, {90, 136}, {22, 197}, {103, 180}, {49, 226}, {44, 255}, {16, 196}, {123, 175}, {95, 139}, {90, 142}, {21, 193}, {73, 157}, {82, 134}, {44, 249}, {107, 190}, {58, 239}, {69, 144}, {87, 130}, {11, 221}, {121, 175}, {39, 241}, {17, 199}, {12, 219}, {113, 166}, {44, 251}, {30, 201}, {10, 210}, {92, 132}, {74, 146}, {5, 220}, {51, 234}, {43, 242}, {65, 152}, {52, 238}, {118, 172}, {110, 180}, {96, 186}, {66, 152}, {83, 137}, {6, 221}, {116, 175}, {115, 168}, {109, 182}, {74, 145}, {76, 151}, {83, 136}, {1, 221}, {100, 184}, {30, 194}, {67, 159}, {88, 132}, {17, 204}, {26, 199}, {25, 196}, {82, 143}, {72, 150}, {119, 169}, {97, 191}, {75, 149}, {88, 134}, {2, 221}, {58, 229}, {22, 201}, {1, 225}, {99, 131}, {55, 215}, {77, 173}, {26, 251}, {42, 203}, {28, 253}, {70, 167}, {28, 254}, {111, 141}, {61, 222}, {54, 210}, {125, 153}, {105, 141}, {59, 223}, {4, 225}, {34, 199}, {28, 249}, {6, 224}, {111, 137}, {56, 222}, {42, 204}, {81, 183}, {28, 251}, {121, 158}, {105, 142}, {101, 130}, {54, 209}, {46, 201}, {41, 193}, {80, 184}, {72, 161}, {112, 153}, {102, 143}, {78, 167}, {79, 166}, {80, 185}, {50, 216}, {53, 223}, {71, 173}, {27, 240}, {41, 194}, {40, 195}, {71, 172}, {29, 241}, {114, 158}, {97, 141}, {34, 207}, {32, 206}, {45, 195}, {11, 228}, {103, 136}, {60, 211}, {55, 216}, {38, 201}, {32, 207}, {14, 225}, {80, 191}, {9, 249}, {124, 140}, {107, 155}, {69, 181}, {27, 234}, {104, 153}, {4, 246}, {116, 134}, {20, 230}, {65, 179}, {47, 220}, {127, 140}, {126, 141}, {20, 224}, {106, 158}, {46, 218}, {37, 209}, {78, 186}, {81, 165}, {50, 199}, {57, 204}, {62, 203}, {23, 225}, {113, 135}, {94, 168}, {57, 206}, {91, 172}, {73, 190}, {18, 234}, {122, 130}, {76, 180}, {13, 244}, {119, 142}, {117, 140}, {118, 140}, {2, 249}, {109, 150}, {98, 153}, {51, 200}, {40, 211}, {106, 150}, {117, 137}, {18, 239}, {29, 224}, {75, 182}, {37, 219}, {108, 146}, {9, 246}, {120, 135}, {61, 194}, {48, 207}, {14, 241}, {44, 256}, {75, 256}, {84, 256}, {109, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 169} under the group generated by the following permutations:

a: (1, 2)(4, 9)(7, 15)(8, 13)(12, 24)(14, 28)(16, 25)(17, 26)(21, 40)(22, 38)(23, 44)(29, 45)(31, 47)(32, 48)(33, 56)(35, 51)(37, 60)(39, 64)(41, 61)(42, 62)(49, 76)(53, 73)(54, 74)(55, 75)(57, 82)(58, 78)(59, 84)(65, 85)(67, 87)(68, 88)(69, 96)(71, 91)(77, 102)(79, 99)(80, 100)(83, 103)(89, 110)(93, 107)(94, 108)(95, 109)(97, 116)(98, 112)(105, 119)(111, 123)(113, 120)(114, 121)(117, 124)(126, 128)(133, 254)(134, 206)(137, 217)(139, 256)(141, 213)(143, 204)(144, 236)(146, 209)(148, 193)(151, 226)(154, 219)(156, 190)(159, 233)(162, 189)(163, 197)(166, 211)(169, 247)(171, 202)(173, 200)(175, 191)(177, 251)(179, 195)(180, 245)(181, 222)(182, 215)(185, 252)(186, 229)(188, 244)(223, 255)(225, 249)(235, 250)(241, 253)
b: (2, 4)(3, 7)(5, 12)(6, 14)(10, 21)(11, 23)(13, 22)(15, 30)(18, 33)(19, 37)(20, 39)(24, 46)(25, 41)(26, 42)(27, 49)(28, 52)(34, 57)(36, 59)(40, 66)(43, 69)(44, 72)(45, 65)(47, 67)(48, 68)(50, 77)(51, 71)(56, 81)(60, 86)(63, 89)(64, 92)(70, 97)(73, 93)(74, 94)(75, 95)(76, 101)(78, 98)(82, 104)(84, 106)(90, 111)(96, 115)(99, 113)(100, 114)(102, 118)(103, 117)(110, 122)(116, 125)(119, 126)(123, 127)(129, 162)(130, 233)(131, 166)(132, 254)(133, 170)(134, 205)(135, 211)(136, 137)(138, 189)(139, 149)(140, 217)(141, 142)(143, 203)(144, 145)(146, 208)(147, 181)(148, 194)(150, 256)(151, 243)(152, 195)(153, 202)(154, 218)(155, 190)(156, 157)(158, 252)(159, 178)(160, 179)(161, 251)(163, 201)(164, 188)(165, 244)(167, 171)(168, 236)(169, 232)(172, 200)(173, 174)(175, 192)(176, 177)(180, 248)(182, 214)(183, 222)(184, 185)(186, 231)(187, 213)(191, 212)(193, 196)(197, 198)(199, 204)(206, 207)(209, 210)(215, 216)(219, 220)(221, 225)(223, 228)(224, 241)(226, 234)(227, 255)(229, 239)(230, 235)(237, 250)(238, 253)(240, 245)(242, 247)(246, 249)
c: (3, 6)(5, 11)(7, 14)(8, 17)(10, 20)(12, 23)(13, 26)(15, 28)(16, 32)(18, 34)(19, 36)(21, 39)(22, 42)(24, 44)(25, 48)(27, 50)(30, 52)(31, 55)(33, 57)(37, 59)(38, 62)(40, 64)(41, 68)(43, 70)(46, 72)(47, 75)(49, 77)(54, 80)(56, 82)(60, 84)(61, 88)(63, 90)(66, 92)(67, 95)(69, 97)(74, 100)(76, 102)(81, 104)(86, 106)(87, 109)(89, 111)(94, 114)(96, 116)(101, 118)(108, 121)(110, 123)(115, 125)(122, 127)(129, 221)(130, 214)(131, 230)(132, 194)(133, 193)(134, 222)(135, 237)(136, 240)(137, 245)(138, 246)(139, 219)(140, 248)(141, 247)(142, 242)(143, 244)(144, 191)(145, 212)(146, 252)(147, 207)(148, 254)(149, 220)(150, 218)(151, 200)(152, 238)(153, 231)(154, 256)(155, 227)(156, 223)(157, 228)(158, 208)(159, 215)(160, 224)(161, 201)(162, 225)(163, 251)(164, 199)(165, 203)(166, 235)(167, 239)(168, 192)(169, 213)(170, 196)(171, 229)(172, 243)(173, 226)(174, 234)(175, 236)(176, 198)(177, 197)(178, 216)(179, 241)(180, 217)(181, 206)(182, 233)(183, 205)(184, 210)(185, 209)(186, 202)(187, 232)(188, 204)(189, 249)(190, 255)(195, 253)(211, 250)
d: (1, 3)(2, 5)(4, 10)(6, 8)(7, 29)(9, 19)(11, 13)(12, 45)(14, 16)(15, 53)(17, 18)(20, 22)(21, 65)(23, 25)(24, 73)(26, 27)(28, 31)(30, 79)(32, 33)(34, 35)(36, 38)(37, 85)(39, 41)(40, 93)(42, 43)(44, 47)(46, 99)(48, 49)(50, 51)(52, 54)(55, 56)(57, 58)(59, 61)(60, 107)(62, 63)(64, 67)(66, 113)(68, 69)(70, 71)(72, 74)(75, 76)(77, 78)(80, 81)(82, 83)(84, 87)(86, 120)(88, 89)(90, 91)(92, 94)(95, 96)(97, 98)(100, 101)(102, 103)(104, 105)(106, 108)(109, 110)(111, 112)(114, 115)(116, 117)(118, 119)(121, 122)(123, 124)(125, 126)(127, 128)(130, 252)(131, 138)(132, 144)(133, 181)(134, 245)(136, 200)(137, 202)(139, 222)(140, 213)(141, 153)(142, 172)(143, 240)(145, 161)(146, 227)(147, 177)(148, 223)(149, 244)(150, 236)(151, 216)(152, 166)(154, 255)(155, 211)(156, 195)(157, 189)(158, 168)(159, 254)(160, 162)(163, 228)(164, 176)(165, 184)(167, 173)(169, 214)(170, 188)(175, 248)(178, 251)(180, 182)(183, 185)(186, 215)(191, 231)(192, 232)(193, 241)(194, 235)(196, 225)(197, 224)(198, 221)(199, 234)(201, 230)(203, 242)(204, 239)(205, 247)(206, 229)(207, 226)(208, 237)(209, 238)(210, 246)(212, 243)(218, 250)(219, 253)(220, 249)(233, 256)
e: (3, 5)(6, 11)(7, 12)(10, 19)(14, 23)(15, 24)(16, 31)(18, 27)(20, 36)(21, 37)(25, 47)(28, 44)(29, 53)(30, 46)(32, 55)(33, 49)(34, 50)(39, 59)(40, 60)(41, 67)(43, 63)(45, 73)(48, 75)(52, 72)(56, 76)(57, 77)(58, 83)(61, 87)(64, 84)(65, 93)(66, 86)(68, 95)(69, 89)(70, 90)(78, 103)(81, 101)(82, 102)(85, 107)(88, 109)(92, 106)(96, 110)(97, 111)(98, 117)(104, 118)(112, 124)(115, 122)(116, 123)(125, 127)(130, 183)(132, 150)(133, 139)(134, 182)(136, 167)(137, 171)(140, 153)(147, 178)(148, 154)(149, 170)(152, 155)(156, 179)(157, 160)(159, 181)(180, 186)(190, 195)(193, 219)(194, 218)(196, 220)(202, 217)(205, 214)(206, 215)(207, 216)(222, 233)(223, 241)(224, 228)(227, 238)(229, 245)(231, 248)(239, 240)(253, 255)(254, 256)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 40 ]
256
-1 221 225 129 162
-2 221 189 249 129
-3 198 160 129 196
-4 246 225 138 162
-5 198 220 157 129
-6 176 221 224 170
-7 179 193 162 197
-8 198 188 164 197
-9 189 246 138 249
-10 210 160 196 131
-11 176 221 149 228
-12 156 162 197 219
-13 198 244 163 164
-14 133 177 225 241
-15 189 148 195 163
-16 147 181 193 196
-17 176 177 199 204
-18 234 147 239 164
-19 220 210 157 131
-20 224 170 184 230
-21 209 166 179 193
-22 165 188 201 197
-23 177 223 225 139
-24 154 189 190 163
-25 222 147 148 196
-26 143 176 199 251
-27 178 234 240 164
-28 253 254 249 251
-29 179 224 160 241
-30 201 138 194 152
-31 220 178 159 219
-32 133 170 206 207
-33 188 181 226 229
-34 199 167 174 207
-35 234 226 173 174
-36 149 184 228 230
-37 209 166 156 219
-38 165 244 201 163
-39 133 235 185 241
-40 211 146 148 195
-41 181 193 183 194
-42 177 203 204 161
-43 242 145 147 239
-44 255 256 249 251
-45 253 224 160 195
-46 155 201 138 218
-47 154 220 178 233
-48 254 134 170 207
-49 188 245 159 226
-50 199 136 216 174
-51 200 234 151 174
-52 132 246 161 238
-53 156 157 223 228
-54 209 144 210 145
-55 149 215 139 216
-56 222 244 151 186
-57 171 204 173 206
-58 167 171 239 229
-59 223 235 139 185
-60 154 211 146 190
-61 222 148 183 194
-62 143 203 161 251
-63 242 145 178 240
-64 253 254 250 252
-65 179 238 152 241
-66 135 194 152 208
-67 159 130 218 219
-68 132 133 205 206
-69 144 181 247 229
-70 167 212 207 142
-71 243 226 172 173
-72 246 150 161 227
-73 255 157 190 228
-74 210 145 146 236
-75 256 149 182 216
-76 233 244 180 151
-77 137 204 215 173
-78 167 202 239 186
-79 166 235 131 230
-80 212 191 184 185
-81 165 231 243 183
-82 143 134 200 202
-83 245 136 137 240
-84 255 256 250 252
-85 253 238 195 152
-86 155 135 218 208
-87 154 233 130 218
-88 132 254 134 205
-89 144 245 159 247
-90 212 136 216 142
-91 243 200 172 151
-92 132 158 237 238
-93 155 156 223 227
-94 209 144 168 208
-95 214 215 139 150
-96 222 169 236 186
-97 191 171 206 141
-98 231 171 229 153
-99 211 250 131 230
-100 212 184 175 252
-101 165 243 248 130
-102 143 200 182 217
-103 136 180 217 240
-104 203 172 205 153
-105 242 247 141 142
-106 158 237 150 227
-107 155 255 190 227
-108 146 168 236 208
-109 256 214 182 150
-110 233 169 180 236
-111 191 137 215 141
-112 231 202 153 186
-113 166 135 235 237
-114 158 191 192 185
-115 231 232 168 183
-116 134 202 213 175
-117 245 137 248 140
-118 203 214 172 140
-119 242 169 213 142
-120 211 135 237 250
-121 158 192 175 252
-122 232 168 248 130
-123 213 182 217 175
-124 180 248 140 217
-125 187 192 205 153
-126 187 232 247 141
-127 187 192 214 140
-128 187 232 169 213
-129 1 2 3 5
-130 67 122 101 87
-131 99 79 19 10
-132 88 68 92 52
-133 68 14 39 32
-134 88 48 82 116
-135 66 113 86 120
-136 90 103 50 83
-137 77 111 83 117
-138 46 4 30 9
-139 55 23 59 95
-140 124 127 117 118
-141 111 126 105 97
-142 90 70 105 119
-143 102 26 82 62
-144 89 69 94 54
-145 63 74 43 54
-146 60 40 74 108
-147 25 16 18 43
-148 25 15 61 40
-149 11 55 36 75
-150 72 95 106 109
-151 56 91 51 76
-152 66 30 85 65
-153 112 125 104 98
-154 24 47 60 87
-155 46 93 107 86
-156 12 37 93 53
-157 5 73 19 53
-158 121 92 114 106
-159 67 89 49 31
-160 45 3 29 10
-161 72 62 52 42
-162 1 12 4 7
-163 13 24 15 38
-164 13 27 18 8
-165 22 101 81 38
-166 79 113 37 21
-167 34 78 58 70
-168 122 115 94 108
-169 110 128 96 119
-170 48 6 20 32
-171 57 58 97 98
-172 91 71 104 118
-173 77 35 57 71
-174 34 35 50 51
-175 121 100 123 116
-176 11 26 6 17
-177 23 14 17 42
-178 47 27 63 31
-179 7 29 21 65
-180 110 124 103 76
-181 33 69 16 41
-182 123 102 75 109
-183 81 115 61 41
-184 100 36 80 20
-185 80 59 114 39
-186 56 78 112 96
-187 125 126 127 128
-188 22 33 49 8
-189 2 24 15 9
-190 24 60 73 107
-191 111 80 114 97
-192 121 114 125 127
-193 16 7 41 21
-194 66 61 30 41
-195 45 15 40 85
-196 3 25 16 10
-197 22 12 7 8
-198 13 3 5 8
-199 34 26 17 50
-200 91 102 82 51
-201 22 46 38 30
-202 78 112 82 116
-203 104 62 118 42
-204 77 57 17 42
-205 88 68 125 104
-206 57 68 97 32
-207 34 48 70 32
-208 66 94 86 108
-209 37 94 21 54
-210 19 74 10 54
-211 99 60 40 120
-212 100 90 80 70
-213 123 116 128 119
-214 127 95 118 109
-215 55 77 111 95
-216 55 90 50 75
-217 123 102 124 103
-218 67 46 86 87
-219 12 67 37 31
-220 47 5 19 31
-221 11 1 2 6
-222 56 25 61 96
-223 23 59 93 53
-224 45 6 29 20
-225 1 23 14 4
-226 33 35 49 71
-227 93 72 106 107
-228 11 36 73 53
-229 33 58 69 98
-230 99 79 36 20
-231 112 81 115 98
-232 122 115 126 128
-233 110 47 76 87
-234 35 27 18 51
-235 79 113 59 39
-236 110 74 96 108
-237 113 92 106 120
-238 92 52 85 65
-239 78 58 18 43
-240 103 27 83 63
-241 14 39 29 65
-242 105 63 119 43
-243 101 91 81 71
-244 56 13 38 76
-245 89 49 83 117
-246 4 72 52 9
-247 89 69 126 105
-248 122 101 124 117
-249 44 2 28 9
-250 99 84 64 120
-251 44 26 28 62
-252 121 100 84 64
-253 45 28 85 64
-254 88 48 28 64
-255 44 73 84 107
-256 44 84 75 109
0

**************