C4graphGraph forms for C4 [ 256, 52 ] = UG(ATD[256,64])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 52 ] = UG(ATD[256,64]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {24, 25}, {88, 89}, {76, 77}, {68, 69}, {38, 39}, {114, 115}, {140, 141}, {150, 151}, {156, 157}, {64, 66}, {245, 247}, {193, 195}, {192, 194}, {188, 190}, {65, 67}, {128, 130}, {129, 131}, {136, 138}, {1, 2}, {241, 242}, {61, 62}, {49, 50}, {9, 10}, {108, 111}, {1, 5}, {203, 207}, {3, 7}, {2, 6}, {26, 28}, {27, 29}, {91, 92}, {227, 228}, {196, 205}, {198, 204}, {211, 217}, {52, 63}, {116, 127}, {2, 14}, {244, 248}, {4, 8}, {3, 15}, {167, 168}, {215, 216}, {32, 48}, {236, 252}, {173, 189}, {111, 126}, {171, 186}, {68, 87}, {4, 16}, {13, 25}, {12, 24}, {7, 19}, {6, 18}, {5, 17}, {192, 213}, {197, 210}, {239, 247}, {102, 125}, {8, 20}, {229, 249}, {227, 255}, {226, 254}, {11, 23}, {10, 22}, {9, 21}, {109, 112}, {226, 255}, {32, 63}, {202, 213}, {110, 113}, {10, 42}, {217, 249}, {23, 55}, {22, 54}, {21, 53}, {20, 52}, {19, 51}, {18, 50}, {17, 49}, {16, 48}, {15, 47}, {14, 46}, {13, 45}, {12, 44}, {11, 43}, {151, 183}, {158, 190}, {6, 39}, {31, 62}, {29, 60}, {27, 58}, {25, 56}, {8, 41}, {130, 163}, {152, 186}, {210, 240}, {5, 38}, {218, 249}, {212, 247}, {205, 238}, {30, 61}, {26, 57}, {84, 112}, {221, 249}, {199, 227}, {211, 246}, {223, 250}, {77, 107}, {221, 251}, {209, 247}, {208, 246}, {156, 186}, {28, 59}, {155, 188}, {27, 51}, {222, 246}, {70, 106}, {215, 250}, {214, 248}, {7, 40}, {144, 191}, {148, 166}, {139, 184}, {216, 236}, {199, 241}, {219, 237}, {206, 248}, {20, 35}, {202, 253}, {201, 254}, {79, 119}, {66, 123}, {70, 127}, {68, 125}, {134, 191}, {73, 115}, {201, 243}, {200, 242}, {69, 126}, {214, 237}, {141, 182}, {82, 110}, {9, 52}, {16, 45}, {11, 54}, {202, 244}, {203, 245}, {17, 46}, {67, 124}, {19, 83}, {141, 205}, {142, 206}, {145, 209}, {36, 101}, {169, 232}, {43, 106}, {41, 104}, {39, 102}, {138, 203}, {46, 108}, {174, 236}, {61, 127}, {47, 109}, {42, 105}, {170, 233}, {165, 230}, {59, 120}, {55, 116}, {51, 112}, {62, 122}, {165, 225}, {129, 197}, {148, 208}, {149, 209}, {33, 100}, {181, 240}, {60, 121}, {54, 115}, {52, 113}, {151, 210}, {24, 94}, {172, 234}, {45, 107}, {25, 95}, {53, 114}, {139, 204}, {46, 102}, {47, 103}, {143, 199}, {150, 222}, {131, 202}, {169, 224}, {159, 214}, {144, 217}, {19, 89}, {167, 237}, {23, 93}, {22, 92}, {130, 201}, {158, 213}, {152, 211}, {136, 196}, {189, 241}, {174, 226}, {154, 214}, {56, 117}, {58, 119}, {153, 212}, {20, 90}, {43, 101}, {21, 91}, {40, 103}, {168, 231}, {164, 235}, {57, 118}, {129, 206}, {154, 213}, {140, 220}, {147, 195}, {157, 204}, {33, 114}, {184, 235}, {180, 231}, {146, 193}, {143, 219}, {178, 230}, {135, 210}, {168, 253}, {138, 223}, {18, 68}, {15, 88}, {36, 115}, {48, 104}, {171, 243}, {14, 87}, {162, 251}, {58, 99}, {160, 250}, {180, 239}, {3, 95}, {185, 229}, {178, 238}, {53, 105}, {136, 212}, {147, 207}, {50, 111}, {183, 234}, {181, 232}, {48, 110}, {145, 207}, {163, 252}, {182, 233}, {156, 252}, {33, 64}, {47, 78}, {44, 77}, {133, 228}, {34, 65}, {134, 229}, {147, 240}, {142, 234}, {36, 66}, {37, 67}, {132, 227}, {140, 235}, {60, 84}, {176, 217}, {179, 218}, {56, 82}, {161, 203}, {150, 251}, {26, 116}, {31, 112}, {191, 208}, {153, 233}, {158, 238}, {35, 82}, {160, 209}, {7, 117}, {162, 208}, {30, 109}, {171, 216}, {38, 85}, {34, 81}, {189, 201}, {128, 245}, {173, 216}, {159, 234}, {149, 224}, {49, 71}, {161, 215}, {45, 90}, {187, 204}, {153, 238}, {1, 121}, {50, 74}, {145, 232}, {4, 120}, {166, 218}, {42, 86}, {31, 99}, {30, 98}, {29, 97}, {28, 96}, {149, 233}, {154, 230}, {37, 88}, {44, 82}, {159, 225}, {55, 73}, {142, 240}, {92, 222}, {89, 220}, {38, 160}, {91, 221}, {39, 161}, {40, 162}, {41, 163}, {87, 219}, {22, 152}, {42, 164}, {14, 159}, {80, 193}, {55, 165}, {59, 168}, {62, 170}, {63, 171}, {108, 248}, {6, 147}, {60, 169}, {58, 175}, {85, 195}, {94, 200}, {76, 219}, {43, 177}, {122, 224}, {123, 225}, {126, 226}, {56, 166}, {57, 167}, {17, 142}, {124, 220}, {83, 242}, {114, 211}, {21, 176}, {59, 158}, {30, 184}, {86, 254}, {53, 156}, {9, 163}, {86, 252}, {78, 228}, {75, 225}, {54, 157}, {120, 212}, {1, 172}, {70, 235}, {81, 255}, {11, 164}, {26, 170}, {69, 244}, {76, 253}, {65, 243}, {127, 205}, {79, 251}, {51, 134}, {85, 224}, {118, 192}, {119, 193}, {126, 200}, {83, 228}, {27, 162}, {120, 194}, {121, 195}, {124, 198}, {125, 199}, {122, 196}, {123, 197}, {63, 128}, {96, 223}, {101, 165}, {69, 132}, {80, 145}, {118, 180}, {119, 181}, {31, 220}, {84, 146}, {2, 197}, {71, 128}, {64, 135}, {74, 130}, {79, 135}, {78, 134}, {77, 133}, {76, 132}, {75, 131}, {103, 175}, {72, 129}, {99, 169}, {116, 190}, {117, 191}, {3, 200}, {44, 231}, {102, 173}, {12, 192}, {35, 239}, {97, 172}, {98, 175}, {34, 236}, {13, 194}, {91, 148}, {32, 239}, {23, 198}, {93, 140}, {94, 143}, {72, 154}, {73, 155}, {101, 183}, {104, 186}, {105, 187}, {111, 189}, {34, 241}, {125, 174}, {87, 131}, {96, 180}, {97, 181}, {99, 182}, {100, 177}, {106, 188}, {37, 242}, {28, 196}, {81, 137}, {80, 136}, {104, 176}, {105, 177}, {106, 178}, {107, 179}, {32, 250}, {83, 137}, {81, 139}, {4, 223}, {37, 254}, {94, 133}, {95, 132}, {18, 206}, {65, 157}, {86, 139}, {103, 185}, {57, 230}, {85, 138}, {88, 184}, {123, 155}, {12, 237}, {35, 194}, {108, 143}, {74, 174}, {109, 137}, {113, 148}, {80, 182}, {67, 164}, {71, 160}, {122, 146}, {113, 152}, {71, 173}, {90, 176}, {74, 161}, {24, 244}, {75, 167}, {95, 179}, {5, 232}, {92, 177}, {84, 185}, {66, 172}, {93, 178}, {98, 141}, {118, 153}, {13, 253}, {15, 255}, {98, 146}, {117, 133}, {40, 218}, {73, 187}, {100, 151}, {72, 188}, {75, 190}, {96, 149}, {124, 137}, {79, 185}, {89, 175}, {16, 231}, {93, 170}, {97, 150}, {10, 243}, {36, 222}, {61, 198}, {107, 144}, {33, 221}, {90, 166}, {8, 245}, {78, 179}, {70, 187}, {41, 215}, {49, 207}, {110, 144}, {121, 135}, {72, 183}, {100, 155}, {29, 256}, {64, 256}, {229, 256}, {246, 256} }>;

(II) A more general form is to represent the graph as the orbit of {24, 25} under the group generated by the following permutations:

a: (2, 121)(4, 187)(5, 172)(6, 135)(7, 200)(8, 105)(10, 52)(11, 239)(12, 220)(13, 184)(14, 60)(15, 95)(16, 204)(17, 97)(18, 79)(19, 94)(20, 42)(21, 163)(22, 63)(23, 180)(24, 89)(25, 88)(27, 108)(28, 116)(29, 46)(30, 253)(31, 237)(32, 54)(33, 161)(34, 144)(35, 164)(36, 160)(37, 56)(38, 66)(39, 64)(40, 126)(41, 53)(43, 247)(44, 124)(45, 139)(47, 132)(48, 157)(49, 150)(50, 251)(51, 143)(55, 96)(57, 170)(58, 248)(59, 127)(61, 168)(62, 167)(65, 110)(67, 82)(68, 185)(69, 103)(70, 120)(71, 222)(72, 80)(73, 223)(74, 221)(75, 122)(76, 109)(77, 137)(78, 227)(81, 107)(83, 133)(84, 87)(85, 123)(86, 90)(91, 130)(92, 128)(93, 118)(98, 202)(99, 214)(100, 203)(101, 209)(102, 256)(104, 156)(106, 212)(111, 162)(112, 219)(113, 243)(114, 215)(115, 250)(117, 242)(119, 206)(125, 229)(129, 193)(131, 146)(134, 199)(136, 188)(138, 155)(140, 192)(141, 213)(142, 181)(145, 183)(147, 210)(148, 201)(149, 165)(151, 207)(152, 171)(153, 178)(154, 182)(158, 205)(159, 169)(166, 254)(173, 246)(174, 249)(175, 244)(176, 252)(177, 245)(179, 255)(189, 208)(190, 196)(191, 241)(194, 235)(195, 197)(198, 231)(211, 216)(217, 236)(218, 226)(224, 225)(230, 233)(232, 234)
b: (2, 5)(3, 9)(4, 12)(6, 17)(7, 21)(8, 24)(10, 15)(11, 30)(13, 35)(14, 38)(16, 44)(18, 49)(19, 53)(20, 25)(22, 47)(23, 61)(27, 33)(28, 57)(29, 64)(31, 73)(32, 76)(36, 84)(37, 86)(39, 46)(40, 91)(41, 94)(42, 88)(43, 98)(45, 82)(48, 77)(51, 114)(52, 95)(54, 109)(55, 62)(56, 90)(58, 100)(59, 118)(60, 66)(63, 132)(65, 81)(67, 139)(68, 71)(69, 128)(70, 140)(72, 80)(74, 111)(75, 149)(78, 152)(79, 150)(83, 156)(85, 159)(87, 160)(89, 105)(92, 103)(93, 127)(96, 167)(97, 135)(99, 155)(101, 146)(104, 133)(106, 141)(107, 110)(108, 161)(112, 115)(113, 179)(116, 170)(117, 176)(119, 151)(120, 192)(121, 172)(122, 165)(123, 169)(124, 204)(125, 173)(126, 130)(129, 145)(131, 209)(134, 211)(136, 154)(137, 157)(138, 214)(142, 147)(143, 215)(148, 218)(153, 158)(162, 221)(163, 200)(164, 184)(168, 180)(171, 227)(174, 189)(175, 177)(178, 205)(181, 210)(182, 188)(183, 193)(185, 222)(186, 228)(187, 220)(190, 233)(191, 217)(195, 234)(196, 230)(197, 232)(199, 216)(201, 226)(202, 247)(203, 248)(206, 207)(208, 249)(212, 213)(219, 250)(223, 237)(224, 225)(229, 246)(236, 241)(239, 253)(242, 252)(243, 255)(244, 245)
c: (1, 2, 6, 18, 50, 111, 189, 241, 34, 81, 139, 184, 235, 140, 93, 170, 26, 28, 59, 120, 194, 35, 82, 110, 144, 217, 249, 221, 251, 150, 97, 172)(3, 10, 19, 54, 112, 73, 146, 188, 80, 154, 209, 237, 250, 76, 41, 95, 9, 7, 22, 51, 115, 84, 155, 193, 72, 145, 214, 160, 219, 215, 132, 163)(4, 13, 20, 56, 113, 191, 211, 229, 33, 79, 151, 181, 234, 5, 14, 39, 68, 74, 126, 201, 242, 65, 137, 204, 30, 70, 141, 178, 233, 57, 96, 168)(8, 25, 52, 117, 152, 134, 114, 185, 100, 119, 183, 232, 159, 38, 87, 161, 69, 130, 200, 243, 83, 157, 109, 187, 98, 106, 182, 230, 149, 167, 223, 253)(11, 31, 55, 122, 190, 136, 213, 247, 12, 32, 77, 104, 179, 21, 40, 92, 27, 36, 60, 123, 195, 129, 207, 248, 71, 143, 216, 227, 252, 15, 42, 89)(16, 45, 90, 166, 148, 208, 246, 256, 64, 135, 210, 240, 142, 17, 46, 102, 125, 174, 226, 254, 37, 67, 124, 198, 61, 127, 205, 238, 153, 118, 180, 231)(23, 62, 116, 196, 158, 212, 192, 239, 44, 48, 107, 176, 218, 91, 162, 222, 29, 66, 121, 197, 147, 206, 49, 108, 173, 199, 236, 255, 86, 88, 164, 220)(24, 63, 133, 186, 78, 53, 103, 177, 58, 101, 169, 225, 85, 131, 203, 244, 128, 94, 171, 228, 156, 47, 105, 175, 43, 99, 165, 224, 75, 138, 202, 245)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 52 ]
256
-1 121 2 5 172
-2 1 14 6 197
-3 200 15 7 95
-4 223 16 8 120
-5 1 232 38 17
-6 2 147 39 18
-7 3 40 117 19
-8 245 4 41 20
-9 52 163 10 21
-10 22 243 9 42
-11 23 43 54 164
-12 44 24 192 237
-13 253 45 25 194
-14 2 46 159 87
-15 88 255 3 47
-16 231 45 4 48
-17 46 5 49 142
-18 68 6 50 206
-19 89 83 7 51
-20 35 90 8 52
-21 176 91 9 53
-22 92 152 10 54
-23 11 55 198 93
-24 12 244 25 94
-25 56 13 24 95
-26 57 170 28 116
-27 58 29 51 162
-28 26 59 96 196
-29 256 27 60 97
-30 61 184 98 109
-31 99 220 112 62
-32 48 63 239 250
-33 100 221 114 64
-34 81 236 65 241
-35 82 194 239 20
-36 66 101 222 115
-37 88 242 67 254
-38 5 39 160 85
-39 102 38 6 161
-40 103 7 162 218
-41 104 215 8 163
-42 105 86 10 164
-43 11 177 101 106
-44 77 231 12 82
-45 13 90 16 107
-46 14 102 17 108
-47 78 15 103 109
-48 110 16 104 32
-49 71 17 50 207
-50 111 49 18 74
-51 112 134 27 19
-52 113 63 9 20
-53 156 114 105 21
-54 11 22 157 115
-55 165 23 116 73
-56 166 25 82 117
-57 167 26 118 230
-58 99 27 119 175
-59 168 158 28 120
-60 121 169 29 84
-61 198 127 62 30
-62 122 170 61 31
-63 171 128 52 32
-64 33 66 135 256
-65 34 67 243 157
-66 123 36 172 64
-67 124 37 65 164
-68 69 125 18 87
-69 132 68 244 126
-70 187 235 127 106
-71 49 160 128 173
-72 154 188 183 129
-73 55 187 155 115
-74 50 161 130 174
-75 167 190 225 131
-76 77 132 253 219
-77 44 133 107 76
-78 134 47 179 228
-79 135 119 185 251
-80 145 136 182 193
-81 34 255 137 139
-82 44 110 56 35
-83 242 137 19 228
-84 112 146 60 185
-85 224 38 138 195
-86 254 139 42 252
-87 68 14 131 219
-88 89 15 37 184
-89 88 220 19 175
-90 176 45 166 20
-91 221 92 148 21
-92 22 177 222 91
-93 23 178 170 140
-94 143 133 24 200
-95 132 3 25 179
-96 223 180 28 149
-97 181 29 150 172
-98 146 30 141 175
-99 58 169 182 31
-100 33 155 177 151
-101 165 36 183 43
-102 46 125 39 173
-103 47 40 185 175
-104 176 48 41 186
-105 187 177 42 53
-106 188 178 70 43
-107 77 45 144 179
-108 143 111 46 248
-109 112 47 137 30
-110 144 113 48 82
-111 189 126 50 108
-112 51 84 31 109
-113 110 148 52 152
-114 33 211 115 53
-115 36 114 73 54
-116 55 190 26 127
-117 56 133 191 7
-118 57 180 192 153
-119 79 58 181 193
-120 212 4 59 194
-121 1 135 60 195
-122 146 224 62 196
-123 66 155 225 197
-124 198 220 67 137
-125 199 68 102 174
-126 111 200 69 226
-127 70 61 116 205
-128 245 71 63 130
-129 72 206 131 197
-130 201 128 74 163
-131 202 129 75 87
-132 69 95 227 76
-133 77 94 117 228
-134 78 191 51 229
-135 121 210 79 64
-136 80 212 138 196
-137 124 81 83 109
-138 223 136 203 85
-139 81 204 184 86
-140 220 235 93 141
-141 182 205 140 98
-142 234 17 206 240
-143 199 94 108 219
-144 110 191 107 217
-145 209 232 80 207
-146 122 193 84 98
-147 6 195 207 240
-148 166 91 113 208
-149 209 233 224 96
-150 222 151 97 251
-151 100 210 150 183
-152 22 211 113 186
-153 233 212 238 118
-154 213 214 72 230
-155 100 188 123 73
-156 157 53 186 252
-157 156 204 54 65
-158 190 59 213 238
-159 14 234 214 225
-160 209 38 71 250
-161 203 39 215 74
-162 27 40 251 208
-163 41 9 130 252
-164 11 67 235 42
-165 55 101 225 230
-166 56 90 148 218
-167 57 168 237 75
-168 231 253 167 59
-169 99 232 224 60
-170 233 26 93 62
-171 243 216 63 186
-172 66 1 234 97
-173 189 102 71 216
-174 125 236 226 74
-175 89 58 103 98
-176 90 104 217 21
-177 100 92 105 43
-178 93 106 238 230
-179 78 95 107 218
-180 231 96 118 239
-181 232 97 119 240
-182 99 233 80 141
-183 101 234 72 151
-184 88 235 139 30
-185 79 103 84 229
-186 156 104 171 152
-187 70 105 204 73
-188 155 190 72 106
-189 111 201 173 241
-190 188 158 116 75
-191 144 134 117 208
-192 12 213 194 118
-193 80 146 195 119
-194 13 35 192 120
-195 121 147 193 85
-196 122 136 28 205
-197 210 2 123 129
-198 23 124 61 204
-199 143 125 227 241
-200 242 3 126 94
-201 243 254 189 130
-202 253 244 213 131
-203 245 138 161 207
-204 187 198 157 139
-205 127 238 141 196
-206 248 18 129 142
-207 145 147 49 203
-208 191 246 148 162
-209 145 247 149 160
-210 135 151 240 197
-211 114 246 217 152
-212 136 247 120 153
-213 154 158 202 192
-214 154 159 237 248
-215 161 216 41 250
-216 236 171 215 173
-217 176 144 211 249
-218 166 179 40 249
-219 143 237 76 87
-220 89 124 140 31
-221 33 91 249 251
-222 36 92 246 150
-223 4 138 96 250
-224 122 169 149 85
-225 165 123 159 75
-226 254 255 126 174
-227 132 199 255 228
-228 78 133 83 227
-229 134 256 249 185
-230 154 165 57 178
-231 44 168 180 16
-232 145 169 5 181
-233 170 149 182 153
-234 159 172 183 142
-235 70 140 184 164
-236 34 216 174 252
-237 12 167 214 219
-238 178 158 205 153
-239 35 180 247 32
-240 210 147 181 142
-241 242 34 199 189
-242 200 37 83 241
-243 201 171 10 65
-244 24 69 202 248
-245 203 247 128 8
-246 211 222 256 208
-247 209 212 245 239
-248 244 214 206 108
-249 221 217 218 229
-250 223 160 215 32
-251 221 79 150 162
-252 156 236 86 163
-253 13 168 202 76
-254 201 37 226 86
-255 15 81 226 227
-256 246 29 64 229
0

**************