[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 56 ] =
UG(ATD[256,82]).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {32, 33}, {234, 235}, {194, 195}, {164, 165}, {92, 94}, {196,
198}, {124, 126}, {1, 2}, {61, 62}, {133, 134}, {137, 138}, {1, 5}, {227, 231},
{75, 79}, {3, 7}, {2, 6}, {16, 21}, {233, 236}, {210, 215}, {48, 53}, {43, 46},
{41, 44}, {8, 14}, {91, 93}, {18, 20}, {147, 148}, {211, 212}, {179, 180}, {242,
250}, {246, 254}, {243, 251}, {4, 13}, {86, 95}, {6, 15}, {135, 142}, {3, 9},
{229, 239}, {5, 14}, {247, 252}, {244, 255}, {6, 13}, {4, 8}, {245, 249}, {241,
253}, {197, 201}, {19, 31}, {149, 153}, {167, 171}, {39, 42}, {114, 127}, {2,
12}, {230, 232}, {166, 168}, {36, 43}, {226, 237}, {225, 238}, {181, 186}, {176,
191}, {172, 188}, {239, 255}, {238, 254}, {237, 253}, {236, 252}, {235, 251},
{226, 242}, {206, 222}, {15, 30}, {233, 248}, {231, 246}, {200, 217}, {40, 57},
{41, 59}, {232, 250}, {205, 223}, {64, 82}, {12, 31}, {228, 247}, {193, 210},
{40, 60}, {228, 240}, {225, 245}, {111, 123}, {8, 29}, {42, 63}, {34, 55}, {11,
30}, {97, 116}, {32, 54}, {229, 243}, {65, 87}, {7, 16}, {230, 241}, {203, 220},
{202, 221}, {77, 90}, {160, 183}, {9, 17}, {11, 19}, {10, 18}, {131, 155}, {35,
58}, {99, 122}, {227, 249}, {7, 28}, {67, 88}, {35, 56}, {129, 157}, {204, 208},
{140, 144}, {6, 27}, {34, 63}, {9, 20}, {161, 191}, {234, 244}, {207, 209}, {5,
26}, {33, 62}, {10, 21}, {64, 96}, {89, 121}, {67, 99}, {23, 54}, {94, 127},
{29, 60}, {27, 58}, {25, 56}, {16, 50}, {31, 61}, {17, 51}, {134, 164}, {159,
189}, {12, 47}, {215, 244}, {209, 242}, {93, 126}, {72, 107}, {66, 97}, {26,
57}, {132, 160}, {154, 190}, {159, 187}, {88, 125}, {201, 236}, {194, 231},
{138, 175}, {152, 189}, {18, 52}, {192, 230}, {69, 99}, {68, 98}, {19, 53}, {28,
59}, {223, 248}, {212, 243}, {205, 234}, {149, 178}, {153, 190}, {80, 120},
{200, 224}, {95, 119}, {132, 172}, {138, 162}, {142, 166}, {130, 171}, {222,
247}, {220, 245}, {203, 226}, {136, 161}, {88, 114}, {128, 170}, {139, 161},
{81, 122}, {221, 246}, {219, 240}, {206, 229}, {195, 232}, {87, 124}, {140,
167}, {151, 188}, {143, 163}, {202, 230}, {14, 35}, {198, 235}, {196, 233}, {86,
123}, {71, 106}, {148, 185}, {14, 32}, {207, 225}, {15, 33}, {131, 173}, {24,
55}, {197, 234}, {89, 118}, {130, 173}, {64, 112}, {66, 114}, {65, 113}, {139,
187}, {154, 170}, {20, 37}, {91, 106}, {69, 116}, {68, 117}, {25, 40}, {24, 41},
{22, 39}, {16, 34}, {80, 98}, {141, 191}, {21, 38}, {70, 117}, {150, 162}, {151,
163}, {17, 36}, {216, 237}, {92, 105}, {134, 179}, {156, 169}, {78, 120}, {217,
239}, {79, 121}, {68, 115}, {211, 228}, {208, 231}, {83, 100}, {128, 184}, {129,
185}, {131, 186}, {77, 119}, {142, 181}, {213, 238}, {210, 233}, {90, 102}, {13,
48}, {204, 241}, {81, 108}, {76, 113}, {73, 116}, {22, 43}, {140, 177}, {147,
174}, {15, 49}, {72, 118}, {20, 42}, {19, 45}, {23, 40}, {139, 202}, {47, 101},
{27, 84}, {62, 111}, {176, 225}, {27, 72}, {61, 110}, {28, 73}, {182, 227}, {56,
109}, {30, 75}, {48, 102}, {180, 226}, {50, 100}, {49, 103}, {158, 200}, {29,
74}, {153, 206}, {150, 204}, {151, 205}, {152, 194}, {155, 193}, {157, 199},
{158, 196}, {51, 104}, {55, 108}, {49, 109}, {184, 228}, {156, 192}, {26, 71},
{54, 107}, {52, 105}, {31, 65}, {190, 224}, {157, 195}, {53, 106}, {186, 229},
{63, 96}, {148, 203}, {58, 91}, {190, 223}, {186, 219}, {184, 217}, {180, 213},
{178, 211}, {174, 207}, {63, 94}, {163, 193}, {188, 222}, {57, 90}, {185, 218},
{62, 93}, {36, 64}, {185, 221}, {175, 203}, {173, 201}, {172, 200}, {38, 67},
{189, 216}, {60, 89}, {58, 95}, {160, 197}, {49, 87}, {37, 66}, {189, 218},
{187, 220}, {59, 92}, {176, 216}, {41, 67}, {188, 214}, {60, 86}, {44, 70}, {51,
88}, {59, 80}, {146, 249}, {32, 76}, {183, 219}, {174, 194}, {53, 89}, {35, 79},
{34, 78}, {33, 77}, {170, 198}, {145, 252}, {162, 207}, {42, 68}, {43, 69},
{175, 192}, {191, 208}, {37, 85}, {50, 66}, {52, 69}, {36, 80}, {177, 197}, {50,
70}, {39, 83}, {38, 82}, {37, 81}, {164, 208}, {165, 209}, {166, 210}, {167,
211}, {178, 196}, {182, 192}, {61, 74}, {57, 65}, {181, 205}, {45, 84}, {184,
193}, {179, 202}, {47, 86}, {46, 85}, {168, 212}, {187, 199}, {169, 213}, {170,
214}, {171, 215}, {3, 126}, {177, 206}, {117, 250}, {108, 254}, {105, 250},
{109, 251}, {10, 150}, {102, 251}, {22, 182}, {10, 169}, {70, 227}, {3, 165},
{84, 243}, {85, 242}, {1, 168}, {82, 249}, {1, 173}, {83, 253}, {4, 171}, {4,
183}, {73, 253}, {75, 255}, {74, 252}, {71, 255}, {23, 214}, {52, 245}, {110,
175}, {112, 177}, {115, 178}, {11, 201}, {79, 141}, {78, 140}, {75, 137}, {74,
136}, {71, 133}, {54, 244}, {25, 219}, {23, 212}, {83, 144}, {2, 198}, {84,
145}, {55, 241}, {77, 139}, {76, 138}, {48, 247}, {95, 152}, {85, 146}, {123,
179}, {124, 180}, {125, 181}, {126, 182}, {127, 183}, {24, 209}, {94, 151}, {92,
149}, {90, 147}, {39, 238}, {103, 174}, {9, 195}, {93, 150}, {106, 161}, {21,
216}, {51, 254}, {45, 224}, {38, 232}, {73, 135}, {72, 134}, {18, 221}, {91,
148}, {8, 217}, {22, 199}, {13, 223}, {119, 165}, {115, 160}, {56, 236}, {118,
162}, {120, 172}, {113, 164}, {87, 129}, {116, 163}, {127, 168}, {5, 222}, {7,
220}, {78, 146}, {11, 214}, {82, 143}, {76, 145}, {122, 167}, {119, 169}, {120,
166}, {24, 199}, {81, 142}, {111, 176}, {96, 128}, {100, 132}, {122, 154}, {98,
131}, {26, 248}, {96, 130}, {46, 204}, {12, 239}, {97, 130}, {107, 136}, {108,
143}, {121, 156}, {121, 159}, {99, 132}, {101, 141}, {109, 133}, {28, 246},
{110, 133}, {114, 158}, {125, 144}, {30, 240}, {112, 158}, {113, 159}, {102,
137}, {103, 136}, {124, 141}, {111, 157}, {117, 135}, {123, 137}, {104, 155},
{46, 218}, {101, 145}, {29, 235}, {44, 218}, {101, 147}, {110, 152}, {112, 135},
{118, 129}, {97, 153}, {98, 154}, {25, 224}, {44, 213}, {105, 144}, {45, 215},
{104, 146}, {103, 156}, {17, 237}, {115, 143}, {104, 149}, {125, 128}, {100,
155}, {47, 256}, {107, 256}, {240, 256}, {248, 256} }>;
(II) A more general form is to represent the graph as the orbit of {32, 33}
under the group generated by the following permutations:
a: (2, 173)(5, 168)(6, 130)(7, 165)(8, 183)(9, 126)(11, 170)(12, 131)(13,
171)(14, 127)(15, 96)(16, 119)(17, 124)(18, 150)(19, 154)(20, 93)(21, 169)(22,
157)(23, 188)(24, 187)(25, 200)(26, 166)(27, 97)(28, 164)(29, 160)(30, 128)(31,
98)(32, 94)(33, 63)(34, 77)(35, 114)(36, 87)(37, 91)(38, 156)(39, 111)(40,
172)(41, 159)(42, 62)(43, 129)(44, 189)(45, 190)(46, 185)(47, 155)(48, 167)(49,
64)(50, 95)(51, 141)(52, 162)(53, 122)(54, 151)(55, 139)(56, 158)(57, 120)(58,
66)(59, 113)(60, 132)(61, 68)(65, 80)(67, 121)(69, 118)(70, 152)(71, 142)(72,
116)(73, 134)(74, 115)(75, 125)(76, 92)(78, 90)(79, 88)(81, 106)(82, 103)(83,
123)(84, 153)(85, 148)(86, 100)(89, 99)(101, 104)(102, 140)(105, 138)(107,
163)(108, 161)(109, 112)(110, 117)(133, 135)(136, 143)(137, 144)(145, 149)(146,
147)(174, 249)(175, 250)(176, 238)(177, 251)(178, 252)(179, 253)(180, 237)(181,
255)(182, 195)(184, 240)(186, 239)(191, 254)(192, 232)(193, 256)(194, 227)(196,
236)(197, 235)(198, 201)(202, 241)(203, 242)(204, 221)(205, 244)(206, 243)(207,
245)(208, 246)(209, 220)(210, 248)(211, 247)(212, 222)(213, 216)(215, 223)(217,
219) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(3, 9)(4, 11)(5, 198)(6, 173)(7, 195)(8, 214)(10, 22)(12, 168)(13,
201)(14, 170)(15, 130)(16, 157)(17, 165)(18, 182)(19, 183)(20, 126)(21, 199)(23,
217)(24, 216)(25, 224)(26, 196)(27, 131)(28, 194)(29, 188)(30, 171)(31, 127)(32,
128)(33, 96)(34, 111)(35, 154)(36, 119)(37, 124)(38, 187)(39, 150)(40, 200)(41,
189)(42, 93)(43, 169)(44, 218)(45, 219)(46, 213)(47, 166)(48, 197)(49, 97)(50,
129)(51, 164)(52, 192)(53, 160)(54, 184)(55, 176)(56, 190)(57, 158)(58, 98)(59,
152)(60, 172)(61, 94)(62, 63)(64, 77)(65, 114)(66, 87)(67, 159)(68, 91)(69,
156)(70, 185)(71, 178)(72, 155)(73, 174)(74, 151)(75, 167)(76, 125)(78, 123)(79,
122)(80, 95)(81, 141)(82, 139)(83, 162)(84, 186)(85, 180)(86, 120)(88, 113)(89,
132)(90, 112)(92, 110)(99, 121)(100, 118)(101, 142)(102, 177)(103, 116)(104,
134)(105, 175)(106, 115)(107, 193)(108, 191)(109, 153)(117, 148)(133, 149)(135,
147)(136, 163)(137, 140)(138, 144)(143, 161)(145, 181)(146, 179)(202, 249)(203,
250)(204, 238)(205, 252)(206, 251)(207, 253)(208, 254)(209, 237)(210, 256)(211,
255)(212, 239)(215, 240)(220, 232)(221, 227)(222, 235)(223, 236)(225, 241)(226,
242)(228, 244)(229, 243)(230, 245)(231, 246)(233, 248)(234, 247)
c: (2, 5)(6, 14)(7, 9)(8, 13)(11, 23)(12, 26)(15, 32)(16, 20)(17, 28)(18,
21)(19, 40)(22, 24)(25, 45)(27, 35)(29, 48)(30, 54)(31, 57)(34, 42)(36, 59)(37,
50)(38, 52)(39, 55)(41, 43)(44, 46)(47, 71)(49, 76)(51, 73)(53, 60)(56, 84)(61,
90)(62, 77)(64, 92)(67, 69)(68, 78)(70, 85)(72, 79)(74, 102)(75, 107)(81,
100)(82, 105)(83, 108)(86, 106)(87, 113)(88, 116)(91, 95)(93, 119)(94, 96)(97,
114)(98, 120)(101, 133)(103, 138)(104, 135)(109, 145)(110, 147)(111, 139)(112,
149)(115, 140)(117, 146)(118, 121)(122, 132)(123, 161)(124, 164)(125, 163)(126,
165)(127, 130)(128, 151)(129, 159)(131, 166)(134, 141)(136, 137)(142, 155)(143,
144)(148, 152)(150, 169)(153, 158)(154, 172)(156, 162)(157, 187)(160, 167)(168,
173)(170, 188)(171, 183)(174, 175)(176, 202)(177, 178)(179, 191)(180, 208)(181,
193)(182, 209)(184, 205)(185, 189)(186, 210)(190, 200)(192, 207)(194, 203)(195,
220)(196, 206)(197, 211)(198, 222)(201, 212)(204, 213)(215, 219)(216, 221)(217,
223)(225, 230)(226, 231)(227, 242)(228, 234)(229, 233)(232, 245)(235, 247)(236,
243)(237, 246)(238, 241)(239, 248)(240, 244)(249, 250)(251, 252)(253, 254)(255,
256)
C4[ 256, 56 ]
256
-1 2 168 5 173
-2 198 1 12 6
-3 165 126 7 9
-4 13 171 183 8
-5 1 222 14 26
-6 2 13 15 27
-7 220 3 16 28
-8 14 4 29 217
-9 3 17 195 20
-10 169 18 150 21
-11 201 214 19 30
-12 2 47 239 31
-13 223 4 48 6
-14 35 5 8 32
-15 33 49 6 30
-16 34 50 7 21
-17 36 237 51 9
-18 221 52 20 10
-19 11 45 31 53
-20 37 18 9 42
-21 16 38 216 10
-22 199 39 182 43
-23 212 214 40 54
-24 55 209 199 41
-25 56 224 40 219
-26 57 5 71 248
-27 58 6 72 84
-28 59 246 7 73
-29 235 60 8 74
-30 11 15 75 240
-31 12 61 19 65
-32 33 14 54 76
-33 77 15 62 32
-34 55 78 16 63
-35 56 79 14 58
-36 80 17 64 43
-37 66 81 85 20
-38 67 232 82 21
-39 22 83 238 42
-40 23 57 25 60
-41 44 67 24 59
-42 68 39 63 20
-43 22 46 36 69
-44 70 213 41 218
-45 224 215 84 19
-46 204 85 218 43
-47 12 101 256 86
-48 13 102 247 53
-49 15 103 87 109
-50 66 100 70 16
-51 88 254 104 17
-52 69 245 105 18
-53 89 48 106 19
-54 23 244 107 32
-55 34 24 108 241
-56 35 25 236 109
-57 90 26 40 65
-58 35 91 27 95
-59 80 92 28 41
-60 89 29 40 86
-61 110 62 74 31
-62 33 111 93 61
-63 34 94 96 42
-64 112 36 82 96
-65 57 113 31 87
-66 37 114 50 97
-67 88 99 38 41
-68 115 117 42 98
-69 99 116 52 43
-70 44 50 117 227
-71 133 255 26 106
-72 134 27 107 118
-73 253 135 28 116
-74 136 61 29 252
-75 79 255 137 30
-76 145 113 138 32
-77 33 90 139 119
-78 34 146 140 120
-79 121 35 75 141
-80 36 59 98 120
-81 122 37 108 142
-82 143 38 249 64
-83 253 100 144 39
-84 45 243 145 27
-85 242 46 146 37
-86 123 47 60 95
-87 124 49 129 65
-88 67 114 125 51
-89 121 60 118 53
-90 77 57 102 147
-91 58 93 148 106
-92 59 94 105 149
-93 91 126 62 150
-94 92 127 63 151
-95 58 86 119 152
-96 128 63 64 130
-97 66 116 130 153
-98 154 68 80 131
-99 132 67 122 69
-100 132 155 50 83
-101 145 47 147 141
-102 90 48 137 251
-103 156 136 49 174
-104 155 146 149 51
-105 144 92 52 250
-106 91 71 161 53
-107 256 136 72 54
-108 55 143 254 81
-109 56 133 49 251
-110 133 61 152 175
-111 176 123 157 62
-112 177 135 158 64
-113 159 65 76 164
-114 66 88 158 127
-115 143 68 178 160
-116 69 73 97 163
-117 68 135 70 250
-118 89 72 129 162
-119 77 165 169 95
-120 78 166 80 172
-121 89 79 156 159
-122 99 154 167 81
-123 111 179 137 86
-124 180 126 141 87
-125 88 144 181 128
-126 3 124 93 182
-127 168 114 94 183
-128 125 170 96 184
-129 157 118 185 87
-130 171 96 173 97
-131 155 173 98 186
-132 99 100 160 172
-133 110 134 71 109
-134 133 179 72 164
-135 112 73 117 142
-136 103 161 74 107
-137 123 102 138 75
-138 137 162 76 175
-139 77 187 202 161
-140 78 144 177 167
-141 79 101 124 191
-142 166 135 81 181
-143 82 115 108 163
-144 125 83 105 140
-145 101 84 76 252
-146 78 104 249 85
-147 90 101 148 174
-148 91 147 203 185
-149 178 92 104 153
-150 93 204 162 10
-151 188 94 205 163
-152 110 189 95 194
-153 190 149 206 97
-154 122 190 170 98
-155 100 104 193 131
-156 121 103 169 192
-157 111 199 129 195
-158 112 200 114 196
-159 121 187 189 113
-160 132 115 183 197
-161 136 191 106 139
-162 138 150 118 207
-163 143 116 193 151
-164 165 134 113 208
-165 209 3 119 164
-166 210 168 120 142
-167 122 211 171 140
-168 1 166 212 127
-169 156 213 119 10
-170 154 198 214 128
-171 167 4 215 130
-172 132 188 200 120
-173 1 201 130 131
-174 103 147 194 207
-175 110 192 203 138
-176 111 191 225 216
-177 112 140 206 197
-178 211 115 149 196
-179 123 134 180 202
-180 124 179 213 226
-181 125 205 142 186
-182 22 126 192 227
-183 4 127 160 219
-184 193 128 217 228
-185 221 148 129 218
-186 181 229 131 219
-187 220 199 159 139
-188 222 214 172 151
-189 159 216 152 218
-190 154 223 224 153
-191 176 161 141 208
-192 156 182 175 230
-193 155 210 184 163
-194 231 195 152 174
-195 232 157 194 9
-196 198 178 233 158
-197 177 201 234 160
-198 2 235 170 196
-199 22 187 24 157
-200 158 224 172 217
-201 11 236 173 197
-202 221 179 139 230
-203 220 148 226 175
-204 46 150 208 241
-205 223 234 181 151
-206 177 222 229 153
-207 209 225 162 174
-208 231 191 204 164
-209 165 242 24 207
-210 166 233 193 215
-211 167 178 212 228
-212 23 243 211 168
-213 44 169 180 238
-214 11 23 188 170
-215 45 210 244 171
-216 176 189 237 21
-217 200 8 184 239
-218 44 46 189 185
-219 25 183 240 186
-220 187 245 203 7
-221 202 246 18 185
-222 188 5 247 206
-223 13 190 248 205
-224 45 200 25 190
-225 176 245 238 207
-226 242 180 203 237
-227 231 70 182 249
-228 211 247 184 240
-229 243 206 239 186
-230 232 202 192 241
-231 246 194 227 208
-232 38 195 250 230
-233 210 236 248 196
-234 244 235 205 197
-235 198 234 29 251
-236 56 233 201 252
-237 253 17 226 216
-238 254 213 225 39
-239 12 255 217 229
-240 256 30 228 219
-241 55 253 204 230
-242 209 226 85 250
-243 212 84 229 251
-244 255 234 215 54
-245 220 225 249 52
-246 231 221 254 28
-247 222 48 228 252
-248 233 223 256 26
-249 146 245 82 227
-250 242 232 105 117
-251 243 102 235 109
-252 145 236 247 74
-253 83 237 73 241
-254 246 51 238 108
-255 244 71 239 75
-256 47 248 107 240
0