C4graphConstructions for C4[ 256, 57 ] = UG(ATD[256,85])

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 256, 57 ]. See Glossary for some detail.

UG(ATD[256, 85]) = UG(ATD[256, 86]) = UG(ATD[256, 87])

      = MG(Rmap(256,324) { 16, 32| 8}_ 32) = DG(Rmap(256,324) { 16, 32| 8}_ 32) = MG(Rmap(256,328) { 16, 32| 4}_ 32)

      = DG(Rmap(256,328) { 16, 32| 4}_ 32) = DG(Rmap(256,341) { 32, 16| 8}_ 32) = DG(Rmap(256,342) { 32, 16| 4}_ 32)

      = AT[256, 44]

Cyclic coverings

mod 32:
12345678
1 - - 0 - - 0 0 26 -
2 - - - 0 0 - - 0 26
3 0 - - - - 1 11 - 27
4 - 0 - - 17 27 - 11 -
5 - 0 - 5 15 - - 15 -
6 0 - 21 31 - - - - 31
7 0 6 - - 21 17 - - -
8 - 0 6 5 - - 1 - -

mod 32:
12345678
1 1 31 - - - - - 0 0
2 - 15 17 - - - - 30 2
3 - - 15 17 - 0 0 - -
4 - - - 1 31 2 30 - -
5 - - 0 30 - - 6 24 -
6 - - 0 2 - - - 12 26
7 0 2 - - 8 26 - - -
8 0 30 - - - 6 20 - -

mod 32:
12345678
1 - 0 18 - - - - 0 0
2 0 14 - - - - - 1 29
3 - - - 0 18 0 0 - -
4 - - 0 14 - 1 29 - -
5 - - 0 31 - - - 20 22
6 - - 0 3 - - 8 10 -
7 0 31 - - - 22 24 - -
8 0 3 - - 10 12 - - -

mod 32:
12345678
1 1 31 - - - 0 - 0 -
2 - 15 17 - - - 0 - 0
3 - - 1 31 - - 27 - 7
4 - - - 15 17 27 - 7 -
5 0 - - 5 - 1 15 - -
6 - 0 5 - 17 31 - - -
7 0 - - 25 - - - 17 31
8 - 0 25 - - - 1 15 -